Scheme & Syllabus For Bachelor of Engineering In Civil Engineering

(July 2025 admission onwards)

Sant Longowal Institute of Engineering and Technology (Deemed to be University, under Ministry of Education, Govt. of India) Longowal -148106, Distt. Sangrur (Pb.), India

Rawl Pory JE &

A De

Shubs

Vision of the department

The department shall strive to act as a podium for the development and transfer of technical competence in academics, impart appropriate skills, entrepreneurship and research in the field of Civil Engineering to meet the changing need

Mission of the department

- 1. To provide modular programmes from skill development to the research level.
- 2. To impart technical education and training in innovative state-of-the-art technology in the field of civil engineering.
- 3. To disseminate knowledge and information by organizing seminars/ workshops/short term courses in a planned
- 4. To provide extension services to rural society, industry professionals, institutions of research and higher learning in the field of civil engineering.
- 5. To interact with the industry, educational and research organizations, and alumni in the fields of curriculum development, training and research for sustainable social development and changing needs of society.

Program Education Objectives (PEOs)

The Program Educational Objectives of the Civil Engineering undergraduate program are for graduates to achieve the following, within few years of graduation. The graduates of Civil Engineering Program will

- PEO 1: Contribute to the Nation's growth, enabling the time-bound creation of world-class infrastructure in the country and delivering sustainable solutions for rural and urban development.
- PEO 2: Pursue professional development to enhance their undergraduate degree and advance their careers.
- PEO 3: Exhibit commitment; engage in lifelong learning and continuous improvement for enhancing their professional and personal capabilities.
- PEO 4: To participate in life-long learning in the relevant domain for addressing global societal needs.

Programme Outcomes (POs)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and manufacturing/welding specialisation for the solution of complex engineering problems.

Problem analysis: Identify, formulate, research literature, and analyse complex civil engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex civil engineering problems or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.

Conduct investigations of complex problems: Conduct investigations of complex construction problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Modern tool usage: To apply appropriate techniques, resources, engineering, and IT tools for modelling of different civil engineering problems with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the civil engineering practice.

Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex civil engineering activities with the engineering community and with the society, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of civil engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Participate and succeed in competitive examination for higher studies.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

Graduates having an ability to identify, analyze and solve engineering problems relating to civil engineering together with allied engineering streams. Graduates will be able to build the nation, by imparting technological inputs and managerial skills to become Technocrats and Entrepreneurs. Graduates will be able to develop new concepts on various emerging fields and pursue advanced research.

sold for

4/

Are i

Shules

Rajinda de P

TEACHING SCHEME

		Semester-I					
S No	Sub Code	Subject Name	L	Т	P	Hrs.	Credits
1	BSMA-401	Engineering Mathematics I	3	1	0	4	4
2	BSCH-401	Applied Chemistry	3	1	0	4	4
3	ESME-401	Elements of Mechanical Engineering	2	1	0	3	3
4	ESME-402	Workshop Technology and Practice	_ 1	0	0	1	1
5	HSMC-401	English Communication and Soft Skills	1	0	0	1	1
6	BSCH-402	Applied Chemistry Lab	0	0	2	2	1
7	ESME-403	Elements of Mechanical Engineering Lab	0	0	2	2	1
8	ESME-404	Engineering Drawing	0	0	4	4	2
9	ESME-405	Workshop Technology and Practice Lab	0	0	4	4	2
10	HSMC-402	English Communication and Soft Skills Lab	0	0	2	2	1
11	MCCH-401	Environmental Studies	3	0	0	3	0
		Total	13	3	14	30	20
- 4			Stanfacture Contract	48.4			
		Semester-II- A					
S No	Sub Code	Subject Name	L	T	P	Hrs.	Credits
1	BSMA-402	Engineering Mathematics II	3	1	0	4	4
2	BSPH-401	Applied Physics	3	1	0	4	4
3	ESEE-401	Elements of Electrical Engineering	2	1	0	3	3
4	ESCS-401	Elements of Computer Engineering	2	0	0	2	2
5	ESEC-401	Elements of Electronics Engineering	2	0	. 0	2	2
6	BSPH-402	Applied Physics Lab	0	0	2	2	1
7	ESEE-402	Elements of Electrical Engineering Lab	0	0	2	2	1
8	ESCS-402	Elements of Computer Engineering Lab	0	0	4	4	2
9	ESEC-402	Elements of Electronics Engineering Lab	0	0	2	2	1
		Total	12	3	10	25	20
			10.20		- 711	War and	
		Semester-II-B					
1	TPIN-421	Practical Training During Summer					
269		Vacations (In-house) 02 weeks	0	0	40	40	1 (S/US)
2	TPIN-422	Technical competency	0	0	40	40	1(S/US)
	0101	Semester-III					
S No	Sub Code	Subject Name	L	T	P	Hrs.	Credits
1	PCCV-511	Surveying-I	3	0	0	3	3
2	PCCV-512	Fluid Mechanics	3	1	0	4	4
3	PCCV-513	Building materials and Construction	3	0	0	3	3
4	ESME-501	Engineering Mechanics	3	1	0	4	4
5	HSMC-501	Principles of Management	3	. 0	0	3	3
6	PCCV-514	Surveying-I Lab	0	0	2	2	Ī
7	PCCV-515	Fluid Mechanics Lab	0	0	2	2	1
8	PCCV-516	Building Materials and Construction Lab	0	0	2	2	1
9	MCMH-501						

Roll Por

Str W

Re iv Shuby

Payinder a P

2027 Onward

		Total	21	2	8	26	20
		Semester-IV-					
			L	Т	P	Hrs.	Credits
S No	Sub Code	Subject Name	3	0	0	3	3
1	BSMA-501	Numerical and Statistical Methods	3	0	0	3	3
2	PCCV-521	Solid Mechanics	265	97.	870	3	
3	PCCV-522	Transportation Engineering I	3	0	0	3	3
4	PCCV-523	Design of Concrete Structures		140.0	NAT.	3	7.7
5	PCCV-524	Hydrology and Ground Water	3	0	0	2	3
6	BSBL-501	Biology for Engineers	2	0	0	3	0
7	MCUG-501	Universal Human Values-II: Understanding Harmony	3	0	0		
8	BSMA-502	Numerical and Statistical Methods Lab	0	0	2	2	1
9	PCCV-525	Solid Mechanics Lab	0	0	2	2	1
10	PCCV-526	Transportation Engineering I Lab	0	0	2	2	1
		Total	20	0	6	26	20
		Semester-IV-B		1 - 22 - 11		100	
	mprp co.		0	0	80	80	2
1	TPID-521	Surveying camp 02 weeks	0	V.	00		(S/US)
2	EAA-521+ A/B/C)	Extra Academic activity Group A/B/C		<u>-</u>	:	-	1 (S/US)
				1412	388		31-11-1
		Semester-V A	T.	700	В	77	Credits
S No	Sub Code	Subject Name	L	T 0	P 0	Hrs.	
I	PCCV-611	Structural Analysis	3	(274)		3	3
2	PCCV-612	Soil Mechanics	3	0	0	3	3
3	OECV-611	Open Elective-1	3	0	0	3	3
4	OECV-612	Open Elective-2	3	0	0	3	3
5	PECV-611	Professional Elective-1	3	0	0	2	3
6	PCCV-613	Structural Analysis lab	0	0	2		1
7	PCCV-614	Soil Mechanics	0	0	2	3	3
8	HSMC-603	Engineering Economics and Entrepreneurship	3	0	0	-	
		Total	18	0	4	22	20
		O V D					82.3
		Semester-V-B	1				1 (S/US)
	EAA-611+	Extra Academic activity Group A/B/C	<u>.</u>	-	-	•	A VALUE OF A
	A/B/C)				N. P.		
	A/B/C)	Comentou VI	Α.				
C Na		Semester-VI-	1	Т	P	Hrs.	Credits
S No	Sub Code	Subject Name	L	T	P 0	Hrs.	Credits 3
1	Sub Code PCCV-621	Subject Name Water and Waste Water Engineering	1		_		Credits 3 4
1 2	Sub Code PCCV-621 PCCV-622	Subject Name Water and Waste Water Engineering Design of Steel structures	L 3	0	0	3	3
1	Sub Code PCCV-621	Subject Name Water and Waste Water Engineering	L 3	0	0	3 4	3 4

Rowe try St la M De . Should projender a

		Total	17	2	4	22	20
8	HSMC-602	Technical Communication Lab	0	0	2	2	- 1
1	HSMC-601	Technical Communication	2	0	0	2	2
0		Water and Waste Water Engineering lab	0	0	2	2	ı

		Semester-VI-B						
1	TPID-621	Industrial Training 04 weeks	0	0	160	160	2(S/US)	
2	EAA-621+ A/B/C)	Extra Academic activity Group A/B/C		p.s.		1.5	1 (S/US)	
		Semester-VII						
S No	Sub Code	Subject Name	L	Т	P	Hrs.	Credits	
1	PCCV-711	Irrigation Engineering	3	1	0	4	4	
2	PCCV-712	Construction Management	3	0	0	3	3	
3	OECV-711	Open Elective-5	3	0	0	3	3	
4	PECV-711	Professional Elective-3	3	0	0	3	3	
5	PECV-712	Professional Elective-4	nal Elective-4 3 0 0					
6	PCCV-713	Computer-Aided Civil Engineering Design Lab	0	0	-4	4	2	
7	PRCV-711	Project Stage I and Seminar	0	0	4	4	2	
		Total	15	1	8	24	20	
		To the common of the same of				Witcheld .	Styre	
30 I ame	T T	Semester-VIII		T EST			13011 13111	
S No	Sub Code	Subject Name	L	T	P	Hrs.	Credits	
1	PECV-721	Professional Elective-5	3	0	0	3	3	
2	PECV-722	Professional Elective-6	3	0	0	3	3	
3	PRCV-721	Project Stage II	0	0	12	12	6	
		Total	6	0	12	18	12	
1	1210	OR					2 1 7	
S No	Sub Code	Subject Name	L	T	P	Hrs.	Credits	
1	INID-721	Internship in Industry	0	0	40	40	6	
2	PRCV-721	Project Stage II	0	0	12	12	6	
		Total	0	0	52	52	12	

Row Sty Sty De "

Stube

Rayinda an Int.

List of Open Electives

OECV-611	Open Elective- 1
OECV-611A	Building Material and Construction
OECV-611B	Disaster Preparedness & Planning

OECV-612	Open Elective- 2
OECV-612A	Sustainable Construction Methods
OECV-612B	Road Safety

OECV-621	Open Elective- 3
OECV-621A	Solid and Hazardous Waste Managements
OECV-621B	Construction equipment and Automation

OECV-622	Open Elective- 4
OECV-622A	Repairs & Rehabilitation of structure
OECV-622B	Ground Improvement Techniques

OECV-711	Open Elective- 5
OECV-711A	Construction Management
OECV-711B	Environment Law and Policy

Rober for St W De vii

Shuly Rojinda and My

List of Professional Electives

PECV-611	Professional Elective- 1					
PECV-611A	Advanced Surveying					
PECV-611B	Rock Mechanics					
PECV-621	Professional Elective- 2					
PECV-621A	Transportation Engineering II					
PECV-621B	Ground Improvement Techniques					
PECV-711	Professional Elective- 3					
PECV-711A	Advanced Construction Materials and Techniques					
PECV-711B	Advanced Concrete Design					
PECV-712	Professional Elective- 4					
PECV-712A	Seismic Resistant Design of Structures					
PECV-712B	Advanced Steel Structures Design					
DECV 721	Professional Elective- 5					
PECV-721	Tiolessional Elective- 5					
PECV-721A	A DESCRIPTION OF THE PROPERTY					
	Foundation Engineering Disaster Preparedness & Planning					
PECV-721A	Foundation Engineering					
PECV-721A PECV-721B	Foundation Engineering Disaster Preparedness & Planning					

Read My 28%

A Reviii

Stubes

Rojinda and

: Engineering Mathematics-I

Subject Code

: BSMA - 401

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn about the basic concepts of Mathematics.

CO2: Understand various rules of Mathematics and how it is applied on solve different equations.

CO3: Understand the behavior of differential equations and integration.

CO4: Learn about the mechanism different formulas derivations and theorem.

CO5: Get knowledge about complex matrix, transformations, theorem and their properties.

Pre-requisite knowledge:

	(CO/PO	Маррі	ng: (St	rong(3)/Me	dium(2) / We	ak(1) i	ndicate	s streng	th of co	rrelation	1):	
Cos	Programme Outcomes (POs)												Programme Specific Outcome:		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	_ I	2	3	4	5	6	7	8	9	10	11	12	11	2	3
CO1	3	1	3	2	2	2	2	3	2	2	2	2	-		
CO2	3	1	3	1	1	3	3	3	3	2	3	3	1	RE.	1
CO3	3	3	3	3	1	2	1	1	3	2	3	2	-	S ⊕ 2	
CO4	3	1	3	1	3	2	2	2	2	2	2	2	1	2	1
CO5	3	3	3	3	1	3	1	1	3	2	2	3	2	1	1
Avg.	3	1.8	3	2	1.6	2.4	1.8	2	2.6	2	2.4	2.4	1	1.5	1

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Matrices	Elementary transformations. Row reduced Echelon forms. Rank of a matrix. Normal form. Linearly dependent and independent vectors. System of linear equations. Linear transformations. Eigen values and eigenvectors. Properties of eigenvalues. Reduction to diagonal form. Verification of Cayley-Hamilton Theorem and its use for finding inverse of a matrix. Idempotent matrices. Complex matrices.	15
	Solid Geometry	Cartesian co-ordinate system. Distance formula. Section formulae. Direction ratios and direction cosines. Equation of a plane. Equations of a straight line. Condition for a line to lie in a plane. Coplanar lines. Shortest distance between two lines. Intersection of three planes. Equation of a sphere. Tangent plane to a sphere. Equations of a cone and a cylinder.	15
Unit-2	Differential equation	Solution of differential equation by variable separable method, homogeneous differential equation of first order and their solution, Exact differential equation.	14

Rowy Joy JE

90

M De

Study

Rojinda and Ind

Linear differential equations	Solution of linear differential equation of first order. Reducible to linear differential equation. Higher order linear differential equation with constant coefficients, complementary function and particular integral. Method of variation of parameters. Cauchy's and Legendre's equations.	16
-------------------------------------	---	----

Recommended Books:

- 1. R.K. Jain, S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishers.
- 2. Denial A Murray, Elementary Course in Differential Equations, Longman.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Eastern Limited.
- 4. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill.

we day 28

h & te2

Shubs

Pajinda de My

: Applied Chemistry

Subject Code

: BSCH-401

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn about the basic concepts of Chemistry.

CO2: Understand various materials and their properties.

CO3: Understand the behavior of different salt solution.

CO4: Learn about the mechanism of using different chemistry testing equipment's.

CO5: Get knowledge about electrolyte behaviour and their properties.

Pre-requisite knowledge:

		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co Programme Outcomes (POs)									Pr	n): ogrami fic Out			
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	3	1	1	1	2 ,	2	1	2	2	1	2	ì	3
CO2	3	1	3	1	1	1	1	3	2	2	_ 1	2	1		1
CO3	3	3	3	3	1	1	2	1	3	2	2	1	1=9	2	
CO4	3	1	3	1	3	1	2	2	2	3	3	1	1	2	1
CO5	3	3	3	3	1	-1_	1	1	1	1	1	3		1	1
Avg.	3	1.8	3	1.8	1.4	1	1.6	1.8	1.8	2	1.8	1.8	1	1.5	1

7	L	_	-	
- 1	n	ρ	•	٠.

Unit	Main Topics	Course outlines	Lecture(s)
		Conductivity of electrolytes- Specific, molar and equivalent conductivity, Nernst equation for electrode potential, EMF series, hydrogen electrode, calomel electrode, glass electrode, Electrolytic and galvanic cells, cell EMF, its measurement and applications, reversible and irreversible cells, concentration cell, electrode (hydrogen gas electrode) and electrolyte concentration cell, concentration cell with and without transference. Potentiometry: Principle, instrumentation and applications.	09
	Fuels	Classification, examples, relative merits, Solid Fuels: Coal, Proximate and Ultimate analysis of coal. Gross and Net Calorific Value, Determination of calorific value by Bomb Calorimeter Carbonization process, Low and High Temperature Carbonization. Liquid fuels: Cracking, Thermal and Catalytic Cracking, Synthetic petrol, Knocking, Antiknocking, Octane number, Cetane Number. Antiknocking agents. Gaseous fuels: Biogas, LPG and CNG. Determination of calorific value by Junker's Calorimeter. Flue gas analysis by Orsat's apparatus, problems.	

sour Juy SE

4

A De 3

Shuly

Rajindar and A

	Surface Chemistry	Adsorption, chemisorption and physisorption, application of adsorption of gases on solids. Langmuir's adsorption isotherm, Freundllch's adsorption isotherm, BET theory of multi-layer adsorption (qualitative), adsorption chromatography. Colloidal particles, surfactants, micelles. Enzyme catalysis, Criteria for choosing catalyst for industrial processes.	09
Unit-2	Engineering Materials	Abrasives – Moh's scale of hardness – natural abrasives (diamond, corundum, emery, garnets and quartz) – synthetic abrasives (silicon carbide, boron carbide) – refractories – characteristics – classification (acidic, basic and neutral refractories) – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) – manufacture of alumina magnesite and zirconia bricks.	10
	Lubricants	Classification of lubricant, lubricating oils, semisolid lubricants, solid and synthetic lubricants. Properties of lubricating oils (viscosity, flash and fire points, cloud and pour point, Iodine Value, Acid Value, R. M. Value, mechanical stability and saponification number).	07

Recommended Books:

- P. C. Jain & M. Jain, Engineering Chemistry, Dhanpat Rai Publishing Company, New Delhi, 2005.
- B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Company, 2008.
- 3. F.W. Billmayer. Textbook of Polymer Science. 3rd Edn, Wiley. N.Y. 1991.
- C. N. Banwell& E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th Edn, Tata McGraw-Hill Edition, 1995.
- 5. S. S. Dara, S. S. Umare, A Text Book of Engineering Chemistry, S. Chand Publishing, 2011.
- 6. J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Chapman and Hall, London, 1996.
- 7. Engineering Chemistry by B. Sivasankar, Tata Mcgraw Hill
- 8. Engineering Chemistry by A. Mallick, Viva Books, 2008.
- Organic Chemistry by J. Clayden, Nick Greeves, S. Warren, Oxford Press 2012.
- 10. Levine, Physical Chemistry, 5/e (7th reprint), Tata McGraw Hill, 2006.
- Inorganic Chemistry, Principle, structure and reactivity, J.E. Huheey, E.A. Keitler, R.L. Keita, O.K. Medhi, Pearson Education, 4th Ed.
- 12. Chemistry, J.E. Mcmerry and R.C. Fay, 5th Ed., Pearson Education, 2008

sound Day Sto &

A Red

Study Pajinda and

: Elements of Mechanical Engineering

Subject Code

: ESME - 401

L	Т	P	Credits	Weekly Load
2	1	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn about the basic concepts of thermodynamics.

CO2: Understand various laws of thermodynamics and how it is applied on various engineering devices.

CO3: Understand the behavior of solids under various types of loads.

CO4: Learn about the mechanism of different machines and its applications.

CO5: Get knowledge about properties of engineering materials and its industrial applications.

Pre-requisite knowledge:

640360)	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co										Pi	rogrami fic Out			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	1	2	. 2	2	1	3	2	2	1	2	3
CO2	2	3	3	3	2	1	2	1	1	1	3	1	1	2	1
CO3	3	3	2	3	2	2	1	1	2	3	2	2	11	2	3.40
CO4	3	3	2	3	1	2	1	2 .	1	3	1	2	1	2	11
COS	3	3	2	2	1	1	1	2	2	2	2	2	5.	1	1
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1	1.8	1.5

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Basic Concept of Thermodynamics	Definition, Thermodynamic system, boundary and surroundings, Thermodynamic property, Thermodynamic processes, Thermodynamic cycle and its concept, Energy and its forms, Ideal gas and characteristic gas equation, Zeroth law of thermodynamics.	06
	First Law of Thermodynamics and its Applications	Definition, Essence and corollaries of the first law, expressions for first law applicable to a process and cycle, concept of internal energy, enthalpy, total energy, specific heats, Closed and open systems, analysis of non-flow and flow processes for an ideal gas under constant volume, constant pressure, constant temperature, adiabatic and polytropic conditions, Analysis of free expansion and throttling processes, analysis of first law to steady flow energy equation and its applications to various engineering devices.	09

Rabas ,

28

A Des

Stubes

Pajinda a 1

	Second Law of Thermodynamics	Limitations of first law, statements of second law and their equivalence, heat engine, heat pump and refrigerator. Philosophy of Carnot cycle and its consequences, Carnot theorem for Heat engine, refrigerator and heat pump, Clausius inequality, philosophy and concept of entropy, Third law of Thermodynamics.	09
Unit-2	Mechanics of Solids	Introduction, stress and strain, Hook's Law, longitudinal and lateral strain, Poisson's ratio, Stress strain diagram for ductile and brittle materials, Factor of safety, strain energy and resilience, Sudden and impact load, Stresses in bars, Thermal stresses, Elastic constants and their significance, relations between Elastic constants.	18
	Mechanism and Simple Machines	Introduction, Mechanisms and their concept, Definition of element, link, kinematic chain, mechanism, machine, Examples of mechanisms and their applications, Concept of Basic machines, Law of Lifting Machine, Different systems of pulleys and wheels.	08
	Engineering Materials	Materials and Engineering, Classification of Engineering Materials, Mechanical Properties of Engineering Materials, Various properties and Industrial applications of metals (ferrous: cast iron, tool steels, stainless steels and non-ferrous: Aluminum, brass, bronze), polymers, ceramics, composites, smart materials, Conductors, Semiconductors and insulators.	08

Recommended Books:

- 1. Nag P.K. Engineering Thermodynamics, Mc. Graw Hill.
- 2. Yadav R., Thermodynamics and Heat Engines, Central Publishing House, Allahabad
- 3. Singh V.P., Theory of Machines, Dhanpat Rai and Company, New Delhi.
- 4. Jindal U.C., Engineering Mechanics, Part-I, Galgotia Publications Pvt.Ltd., New Delhi.

and Pay At & Market Projection on the file

: Workshop Technology and Practice

Sub Code

: ESME - 402

L	T	P	Credits	Weekly Load
1	0	0	1	1

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Basic concepts of workshop processes.

CO2: Understand various formation equipment and how it is applied on various engineering application.

CO3: Learn about the mechanism of different machines and its applications.

CO4: Understand the behavior of foundry, carpentry tools and their use.

CO5: Differentiateproperties of engineering materials and its industrial applications.

Pre-requisite knowledge:

	C	O/PO I	Mappii	ng: (St	rong(3)) / Med	lium(2) / We	ak(1) ii	ndicates	streng	h of co	rrelatio	n):	
COs	Programme Outcomes (POs)													ogrami fic Out	
CO3	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	11	2	3	4	- 5	6	7	8	9	10	11	12	1	2	3
COI	3	3	2	. 2	1	2	2	2	1	3	2	2	2	1	3
CO ₂	2	3	3	3	2	1	2	1	1	1	3	1	1	2	1
CO3	3	3	2	3	2	2	1	1	2	3	2	2	-	2	2
CO4	3	3	2	3	1	2	_ 1,	2	1	3	1	2	2	- 1	2
CO5	3	3	2	2	1	1	1	2	2	2	2	2	-	2	1
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1.6	1.6	1.8

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Sheet Metal	Introduction to sheet metal work; GI sheets, aluminium, tin plate, copper, brass etc, Hand tools used in sheet metal shop like steel rule, vernier calipers, micrometer, sheet metal gauge etc., scriber, divider, punches, chisels, hammers, snips, pliers, stakes, rivets etc., Operations -shearing, bending, drawing, squeezing etc.	06
	Pattern Making	Introduction to pattern making, moulding and foundry practice. Pattern materials like wood, cast iron, brass, aluminium, waxes etc., different types of patterns, pattern allowances.	06
	Foundry	Introduction to casting process, core-boxes, core prints, hand tools-shovel, riddle, rammer, trowel, slick, lifter, sprue pin, bellow, mallet, vent rod, pouring weights etc., moulding sands-green sand, dry sand, loam sand, facing sand etc., grain shape and size, properties of moulding sand, sand preparation and testing etc., Gating Systems-requirements and functions, Functions of risers, Riser and directional	08

sout by SE

W

A Re?

Strules

Pajinda a l

		solidification. casting- permanent mould casting, centrifugal casting, etc.	
Unit-2	Carpentry	Introduction to wood working, Types of wood, seasoning methods, Marking and Measuring Tools-rule, try square, marking gauge, mortise gauge etc. Cutting Tools-rip saw, tenon saw, firmer chisel, mortise chisel, iron jack plane, wooden jack plane etc., Drilling Tools-braces, drill bits etc., Striking Tools-hammers, mallet etc., Holding Tools-bench vice, G-cramp etc., Miscellaneous Tools-rasps, files, screw driver, pincer etc.; Operations-marking, sawing, planning, chiseling, boring, grooving etc., Joints- Corner joints, Tenon and Mortise joint, Briddle cross-joint.	06
	Fitting	Introduction to fitting, Tools used in fitting -bench vice, hammers, chisels, files-flat file, square file, half round file, round file, knife edge file, scrapers, hacksaws, try squares, drill machine, drill bits, taps, dies etc, Operations-chipping, filing, scrapping, sawing, marking, drilling, tapping, dieing etc.;	06

Total: 32

Recommended Books:

- Hajra Choudhury, Hazra Choudhary and Nirjhar Roy, 2007, Elements of Workshop Technology, vol. I, Media promoters and Publishers Pvt. Ltd.
- 2. W A J Chapman, Workshop Technology, 1998, Part -1, 1st South Asian Edition, Viva Book Pvt Ltd.
- 3. P.N. Rao, 2009, Manufacturing Technology, Vol.1, 3rd Ed., Tata McGraw Hill Publishing Company.
- 4. Kaushish J.P., Manufacturing Processes, 2008, Prentice Hall India

sound by JE & Make . Much pajindar and I fee

: English Communication and Soft Skills

Subject Code

: HSMC - 401

L	Т	P	Credits	Weekly Load
1	0	0	11	1

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Basic concepts of English skills and their use.

CO2: Understand various formation of sentences and how it is applied in general life.

CO3: Learn about the concepts of grammar for the formation of sentences.

CO4: Understand the behavior of words and their impact in writing.

CO5: Differentiatebetween tenses, voice command and phrases in sentence formation.

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of c Programme Outcomes (POs)												1.1	ogrami fic Out	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	3	2	2	1	2	2	2	1	3	2	2	2	*	1
CO2	2	3	3	3	2	1	2	1	1	1	3	1	1_1_		1
	3	3	2	3	2	2	1	1	2	3	2	2		2	220
CO3		2	2	3	1	2	1	2	1	3	1	2	1	2	1
CO4	3	3				1	1	-	2	2	2	2	(-)	2	1
CO5	3	3	2	2	1_	1	1	2	_		077			2	1
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1.33	2	Ī

T	L	20	-	,

Theo Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Communication Techniques	Importance of Communication, One-way and Two-way Communication, Essentials of Good and effective Communication, Barriers to Communication, Techniques to Overcome Barriers	04
	Writing Skills	Précis- writing; Essay- writing, Official e-mail writing	04
Unit-2	Report Writing	Reports and their importance, Types of Routine Reports along with their formats- Annual Confidential Report, Progress Report, Inventory Report, Inspection Report, Lab Report, Structure of Reports; Bibliography & References	04
	Grammar & Vocabulary	Tenses, Change of Voice, Change of Narration, Words often confused, Correct use of Prepositions, Use of Idioms and Phrases	04

Total=16

Recommended Books:

- 1. Bhattacharya, Indrajit. An Approach to Communication Skills. Dhanpat Rai & Co.
- 2. Gibaldi, Joseph. MLA Handbook for Writers of Research Papers. MLA.
- 3. Sinclair, John. Collins Cobuild English Grammar. Collins.
- Wren, P.C. &H. Martin. High School English Grammar & Composition. S. Chand & Company Ltd.
- Sharma, R.C. & Krishna Mohan. Business Correspondence and Report Writing. Tata McGraw-Hill.

easet by St Se Se Market Payinder and Se

: Applied Chemistry Lab

Subject Code

: BSCH-402

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Basic concepts of English skills and their use.

CO2: Understand various formation of sentences and how it is applied in general life.

CO3: Learn about the concepts of grammar for the formation of sentences.

CO4: Understand the behavior of words and their impact in writing.

CO5: Differentiatebetween tenses, voice command and phrases in sentence formation.

Pre-requisite knowledge:

50	C	Programme Outcomes (POs)													ne comes
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO [*]	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	1	2	2	2	1	3	2	2	1	2	1
CO2	2	3	3	3	2	1	2	1_	1	1	3	1	1	:=7/)	1
CO3	3	3	2	3	2	2	1	1	2	3	2.	2	- 2	2	_1_
CO4	3	3	2	3	1	2	1	2	1	3	1	2	1	2	1
CO5	3	3	2	2	1	1	1	2	2	2	2	2	-	2	1
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1	2	1

List of Experiments (10-14):

- 1. Introducing yourself.
- 2. Observing and analyzing your environment/ surroundings.
- 3. Collecting and Using Library Resources.
- 4. Giving Individual Presentations.
- 5. English Conversation Skills.
- 6. Group Discussions.
- 7. Extempore.
- 8. Debates.
- 9. Summarizing newspaper reports.
- 10. Role Plays.
- 11. Grammar exercises.
- 12. Finalization of Team Project Work.
- 13. Collecting Materials for Project Work & Finalization of Project.
- 14. Presentation of Project.

Rahmed John Jo

(m)

A Rell

Strutes

Rejinder are his

: Elements of Mechanical Engineering Lab

Subject Code

: ESME - 403

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn about the basic concepts of thermodynamics.

CO2: Understand various laws of thermodynamics and how it is applied on various engineering devices.

CO3: Understand the behavior of solids under various types of loads.

CO4: Learn about the mechanism of different machines and its applications.

CO5: Get knowledge about properties of engineering materials and its industrial applications.

. . . I -- and admos

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co												11	ogramr fic Out	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	3	2	2	1	2	2	2	1	3	2	2	1	2	1
CO2	2	3	3	3	2	1	2	1	1	1	3	1	1	-	2
			2	3	2	2	1	1	2	3	2	2		2	1_
CO3	3	3	-	3	1	2	1	2	1	3	1	.2	2	1	2
CO4_	3	3	2	3	1				2	2	2	2	-	2	1
CO5	3	3	2	2	1	1	1	2	4		2	17/01	1.33	1.75	1.4
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1.55	1.73	1.3

List of Experiments:

- 1. To verify the Zeroth law of thermodynamics.
- 2. To study the COP's of Heat pump and Refrigerator.
- 3. To study the behaviour of ductile and brittle materials under tensile load.
- 4. To study different types of kinematics links and kinematic chains.
- 5. To find out the mechanical advantage, velocity ratio and efficiency of first system of pulley.
- 6. To find out mechanical advantage, velocity ratio and efficiency of a simple lifting machine.
- 7. To study the classification and properties of various engineering materials.

: Engineering Drawing

Subject Code

: ESME-404

L	T	P	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand the universally accepted conventions, symbols and the methods of engineering drawing such as line, lettering, dimensioning, scales etc.

CO2: Draw dimensioned orthographic and isometric projections of engineering objects.

CO3: Develop and interpret the projection of planes, regular & sectioned solids, solids, surfaces.

CO4: To translate geometric and topological information of common engineering object.

CO5: To understand and visualize geometric objects more clearly by using AutoCAD.

Pre-requisite knowledge:

COs		O/PO	марри		Progra			2		ndicates	streng	th of co	Pi	n): ogrami fic Out	
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	2	3	2	2	1	3	3	2	2	1	2	2
CO2	3	2	3	3	1	2	3	2	1	2	2	2	1	:+::	2
CO3	2	3	2	1	2	2	2	3	2	3	3	3	-	2	1
CO4	3	2	2	1	2	1	2	3	2	2	3	3	2	1	2
CO5	3	2	3	2	3	2	3	2	3	3	3	2	-	2	1
Avg.	2.4	2.2	2.6	1.8	2.2	1.8	2.4	2.2	2.2	2.6	2.6	2.4	1.33	1.75	1.6

Theory

Unit	Main Topics	Course outlines	Lecture(s
Unit-1	Introduction	Introduction, Objectives, applications, Fundamentals of engineering drawing, Use and handling of different drawing instruments, title block, sheet sizes, first and third angle projections, orthographic projections.	04
	Lettering and Dimensioning	Free hand sketching of different types of lines in engineering drawing as per IS specifications, Free hand lettering (alphabet and numerals) - lower case and upper case, vertical and inclined at 75° in the ratio of 7:4, Notation of dimensioning, size and location dimensions, aligned and unidirectional systems of dimensioning, general rules for dimensioning, unit of dimensioning.	04
	Scales	Uses of scales, sizes of scale, representative fraction, construction of plain and diagonal scales.	06
	Projection of Points and Lines		08

sound Jay 28

W

A 2013

Study

Rayinda an July

Unit-2	Projection of Planes	Definition of plane, types of planes, traces of plane, projection of planes in different positions.	04
	Projection of Solids	Types of solids, projections of solids in simple and typical positions, introduction on sectioning of solids.	08
	Development of Surfaces	Introduction, Development of a right prism, cylinder, pentagonal prism, and a right pyramid, truncated pentagonal pyramid.	08
	AutoCAD	Introduction to AutoCAD software, familiarization with various AutoCAD toolbars, use of absolute, relative and polar coordinate system, creating new drawings using drawing tools, editing of drawings using modify commands, dimensioning of 2D and 3D drawings.	06

Recommended Books:

- 1. P S Gill, Engineering Drawing, Kataria and Sons, New Delhi
- 2. Harvinder Singh, Engineering Drawing & Computer Graphics, Dhanpat Rai, New Delhi.
- 3. R.K.Dhawan, Engineering Drawing, S. Chand & Co, New Delhi
- 4. N.D, Bhatt, Engineering Drawing, Charotar Publishing House

some for JE

In A 2014

. Shubs

Rojinda and A

: Workshop Technology and Practice Lab

Subject Code

: ESME-405

L	T	P	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Basic concepts of workshop processes.

CO2: Understand various formation equipment and how it is applied on various engineering application.

CO3: Learn about the mechanism of different machines and its applications.

CO4: Understand the behavior of foundry, carpentry tools and their use.

CO5: Differentiateproperties of engineering materials and its industrial applications.

Pre-requisite knowledge:

COs	Programme Outcomes (POs)										Specific						rogrami fic Out	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3			
CO1	3	3	2	2	1	2	2	2	1	3	2	2	2	1	2			
CO2	2	3	3	3	2	1	2	1	1	I	3	1	1	1	2			
CO3	3	3	2	3	2	2	1	1	2	3	2	2	74	2	1			
CO4	3	3	2	3	1	2	1	2	1	3	1	2	2	1	2			
CO5	3	3	2	2	1	1	1	2	2	2	2	2	5 #	2	1			
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	1.66	1.4	1.6			

List of Practical's (10-14) jobs from the following list:

CARPENTRY SHOP

- · Making of various joints
- · Cross lap joint
- T-lap joint
- Corner lap joint
- · Mortise and tenon joint
- · Dovetail joint

FITTING SHOP

- Study and use of instruments in fitting shop, like vernier caliper, micrometer and height gauge etc.
- Exercise on simple operations viz. cutting, chipping, sawing, filling, drilling etc.

FOUNDRY SHOP

- · Familiarization with different types of patterns and hand tools
- · Preparations of green sand mould using single piece pattern.
- · Preparations of green sand mould using split piece pattern on bench molding.
- Preparations of green sand mould using solid piece pattern by bedded molding.

PATTERN SHOP

· Familiarization with different tools and patterns in the shop

Reduct Voly

gn/

A 2015

Shukes

Rajinda and

- Exercise on making of solid piece pattern.
- Exercise on making of split piece pattern.
- · Exercise on making of cored pattern.

SHEET METAL SHOP

- · Study the layout and different equipment used in sheet metal shop.
- · Familiarization with different tools and processes in sheet metal shop
- Exercise on cutting, development, folding, bending, piercing, punching, parting, notching, slitting etc,
- · Profile and circle cutting exercise.

come Der 28 Sr

\$ 20 16

Study

Payinda and

: English Communication & Soft Skills lab

Subject Code

: HSMC - 402

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand concepts of Communication

CO2: Improve Communication Skills

CO3: Understand Concept of Grammar and their usage

CO4: Participate effectively in group discussions, debates and job interviews

CO5: Make oral presentations and be able to use multimedia

Pre-requisite knowledge

	С	O/PO	Mappi	ng: (St	rong(3) / Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
COs					Progra	ımme (Outcon	nes (PC	Os)		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			ogramr fic Out	
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	3	1	1	1	2	1	1	1	1	1	2	2	2
CO2	3	1	3	1	1	1	1	1	1	1	1	1	2	3	2
CO3	3	3	3	3	1	1	1	1	1	1	1	1	1	2	1
CO4	3	1	3	1	3	1	2	2	1	1	1	1	1	2	2
CO5	3	3	3	3	1	1	1	1	1	1	1	3	2	2	2
Avg.	3	1.8	3	1.8	1.4	1	1.4	1.2	1	1	1	1.4	1.6	2.2	1.8

List of Activities of Lab (10-14):

- 1. Reflecting upon Self and Analyzing Environment.
- 2. Reading and Improving upon Vocabulary with the Help of Newspapers
- 3. Collecting and Using Library Resources.
- 4. Giving Individual Oral Presentations (Will Require Multiple Sessions)
- 5. English Conversation Skills and Speaking Practice
- 6. Group Discussions/Debates/Extempores
- 7. Summarizing a Given Short Story
- 8. Summarizing NewspaperReports and Events
- 9. Role Plays/Mock Events
- 10. Grammar Exercises
- 11. Finalization of Team Project Work.
- 12. Collecting Materials for Project Work & Finalization of Project.
- 13. Presentation of Project.

: Environmental Studies

Subject Code

: MCCH-401

L	T	P	Credits	Weekly Load
3	0	0	0	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Appreciate the need for Environmental integration for sustainable development.

CO2: Understand the importance of biodiversity and its conservation.

CO3: Recognize reasons for environmental pollution and remedial measures.

CO4: Familiarize with national and International environmental regulations

Pre-requisite knowledge:

Cos		0/1 0 1	viappii			imme C				idicates	strengt	in or co		ogrami fic Out	
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	1	2	3	3	3	1	2	1	2	2	2	2
CO2	2	2	2	1	2	3	3	3	1	2	1	2	2	1	2
CO3	2	2	2	1	2	3	3	3	3	2	1	2	2	1	2
CO4	2	2	2	1	2	2	3	3	1	2	1	2	3	2	3
Avg.	2	2	2	1	2	2.75	3	3	1.5	2	1	2	2.25	1.5	2.25

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction to Environmental Studies	Multidisciplinary nature of environmental studies, Scope and importance; Concept of sustainability and sustainable development.	02
	Ecosystems	What is an ecosystem? Structure and function of ecosystem; Energy flow in ecosystem: food chains, food webs and ecological succession. Case studies of the following ecosystems: a) Forest ecosystem b) Grassland ecosystem c) Desert ecosystem d) Aquatic ecosystems(ponds, streams, lakes, rivers, oceans, estuaries)	06
	Natural resources: Renewable and Non-renewable resources	Land resources and landuse change; Land degradation, soil erosion and desertification Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal population. Water: Use and over exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter-state).	06

Raine Day St Son

A 2018

Stubes

Rajinda de M

		Energy Resources: Renewable and Non-renewable energy sources, use of alternate energy sources, growing energy needs, case studies.	
	Biodiversity and Conservation	Levels of biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; Biodiversity patterns and global biodiversity hot spots. India as a mega-biodiversity nation; Endangered and endemic species of India. Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions. Conservation of biodiversity: I-situ and Ex-situ conservation of biodiversity. Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic and Informational value.	06
Unit-2	Environmental Pollution	Environmental pollution: types, causes, effects and controls; air, water, soil and noise pollution, Nuclear hazards and human health risks. Solid waste management: control measures of urban and industrial waste. Pollution case studies.	08
	Environmental policies and practices	Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture Environmental laws: Environment protection act; Air (Prevention and control of pollution) act, Wildlife protection act, Forest conservation act, International agreement: Montreal and Kyoto protocols and Convention on Biological Diversity (CBD), Nature reserves, tribal populations and rights, and human wildlife conflict in Indian context.	07
	Human Communities and the Environment	Human population growth: Impacts on environment, human health and welfare. Resettlement and Rehabilitation of project affected persons; case studies. Disaster management: floods, earthquake, cyclones and landslides. Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (example CNG vehicles in Delhi)	06
	Field work	Visit to an area to document environmental assets: river/forest/flora/fauna etc. Visit to a local polluted site: urban/rural/industrial/ agriculture. Study of common plants, insects, birds and basic principle of identification. Study of simple ecosystems-pond, river, Delhi ridge etc.	05

Raber Joy JE

N A 2019

Shules

Pojinda an My

Recommended Books:

- 1. Carson, R.2002. Silent Spring, Houghton Mifflin Harcourt.
- 2. Gadgil, M & Guha, R.1993. This Fissured Land: An Ecological History of India. Univ. of California
- 3. Glesson, Band Low, N.(eds) 1999. Global Ethics and Environment, London, Routledge.
- 4. Glerick, P.H. 1993. Water in Crisis. Pacific Institute for Studies in Dev, Environment& security. Stockholm env. Institute, Oxford Univ. Press.
- 5. Groom, Martha J., Gaery K. Meffe and Carl Ronald Caroll. Principles of conservation Biology. Sunderland: Sinauer Associates, 2006.
- 6. Grumbine, R. Edward, and Pandit, M.K. 2013. Threats from India's Himalaya dams. Science, 339:36-37

solved by St Sa M De 20

: Engineering Mathematics II

Subject Code

: BSMA-402

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

The objective of this course is to familiarize the prospective engineers with techniques in multivariate integration, ordinary differential equations and complex variables. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines. Upon completion of this course, students will learn:

CO1: The mathematical tools needed in evaluating multiple integrals and their usage.

CO2: The effective mathematical tools for the solutions of differential equations that model physical processes

CO3: The tools of differential and integrations of functions of a complex variable that are used in various techniques dealing engineering problems.

CO4: Laplace transform and its applications to the solution of differential equations.

Pre-requisite knowledge:

Cos	0000000	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of o											Programme Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO1	3	3	3	3	2	2	3	2	3	3	2	2	2	1	2
CO2	3	3	3	3	2	2	3	2	3	3	2	2	2	1	2
CO3	3	3	3	3 -	2	2	3	2	3	3	2	2	1	1	1
CO4	3	-3	3	3	2	2	3	2	3	3	2	2	2	i	1
Avg.	3	3	3	3	2	2	3	2	3	3	2	2	1.75	1	1.5

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Multivariable Calculus (Integration)	Multiple Integration: Double integrals (Cartesian and polar), Change in order of Integration in double integrals, Change of Variables (Cartesian and polar). Applications: area and volumes. Triple Integrals (Cartesian), Simple applications involving cube, sphere and rectangular parallelopiped.	7
	Ordinary Differential Equations	Exact, Linear and Bernoulli's differential equations, Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy-Euler equation.	6
	Laplace Transform	Laplace transform of elementary functions, properties of Laplace transform, transform of derivatives and integrals, inverse Laplace transform, Convolution theorem, Solution of ordinary differential equations using Laplace transform, Unit step function and unit impulse function, their Laplace transforms.	8

came toy do

N De 21

Shubes

Pajinda De P

Unit-2	Complex Variable- Differentiation	Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate. Elementary analytic functions (exponential, trigonometric, logarithm) and their properties. Conformal mapping.	8
	Complex Variable- Integration	Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Liouville's theorem and maximum-modulus theorem (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series. Cauchy residue theorem (without proof), Residue theorem and its applications to real integrals: Integration around unit circle, Integration over semi-circular contours.	9
	Vector Integration	Line, surface and volume integrals. Theorems of Green (in plane), Gauss and Stoke (without proof) - their verification and applications.	7

Recommended Books:

- G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- W.E.Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems. 9th Edn., Wiley India, 2009.
- 4. S.L.Ross, Differential Equations, 3 Ed. Wiley India, 1984.
- 5. E.A Coddington, An Introduction to Ordinary Differential Equations, Prentice hall India, 1995.
- 6. E.L. Ince. Ordinary Differential Equations, Dover Publications, 1958.
- J.W. Brown and R.V. Churchill, Complex Variables and Applications, McGraw-Hill, 7th Edn., 2011.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2018.

swed by JE Su

De 22

Shules pajinda and

: Applied Physics

Subject Code

: BSPH-401

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the basic knowledge about waves and oscillations, Quantum mechanics, Laser and fibre optics, Electronic, Dielectric, magnetic and superconducting properties of materials and their applications.

CO2: Know the conceptual physics and its use in solving the physical problems.

CO3: Apply the principles/laws of physics for various engineering applications.CO4: Describe the acquired knowledge of physics in his /her words.

CO5: Identify the reasons for physical happenings.

Pre-requisite knowledge:

	C	O/PO !	Mappii	ng: (Str	rong(3)	/ Med	lium(2) / We	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
Cos	Programme Outcomes (POs)											Programme Specific Outcomes			
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	. 3
CO1	3	1	1	1	1	1	2	2	3	2	1	3	2	2	2
CO2	3	3	3	2	3	2	2	1	2	1	2	2	1	1	1
CO3	3	1	2	1	1	3	3	3	3	2	3	. 3	2	1	2
CO4	3	3	1	1	1	2	2	2	2	3	1	1	1	2	1
CO5	2	1	3	1	1	2	3	2	2 -	2	2	2	2	1	1
Avg.	2.8	1.8	2	1.2	1.4	2	2.4	2	2.4	2	1.8	2.2	1.6	1.4	1.4

Theory

Unit	Main Topics	Course outlines	Lecture(s)				
Unit-1	Waves and Oscillations	Simple harmonic motion, damped and forced simple harmonic oscillator, Mechanical and electrical simple harmonic oscillators, damped harmonic oscillator – heavy, critical and light damping, energy decay in a damped harmonic oscillator, quality factor, forced mechanical and electrical oscillators, electrical and mechanical impedance.					
	Quantum Mechanics	Need of quantum mechanics, de-Broglie hypothesis, wave packet; particle, group and phase velocities and their relationships, properties of wave function, Schrödinger's time independent and time dependent wave equations, energy and momentum operators, Eigen values and Eigen functions, expectation values of physical quantities (position, momentum and energy), application of time	08				

Rabord. John J. S.

Con

A 23

Shukes

Pajirda a Li

		independent wave equation for a particle in a box (one dimension).	
	Lasers & Fibre Optics	Absorption of radiation, spontaneous and stimulated emission of radiation, Einstein's coefficients, basic requirements of laser system - population inversion, optical pumping; Helium-Neon and Ruby lasers, Applications of laser, basic theory and physical structure of optical fiber, acceptance angle and numerical aperture, fiber materials, types of fibers, losses in optical fibers and basic ideas about optical sensors.	08
Unit-2	Electronic Materials	Free electron theory of metals, Bloch's theorem for particles in a periodic potential, Energy band diagrams, Kronig-penny model (to introduce origin of band gap), Energy bands in solids, E ~ k diagram, Brillouin zone and effective mass, direct and indirect band gaps, Distinction between metals, semiconductors and insulators.	08
	Dielectric properties of materials	Introduction of dielectric materials, polar and non-polar dielectric, basic concept of polarization, Different types of polarization, polarizability, temperature and frequency dependence of polarizability, Clausius-Mossotti relation, dielectric breakdown, dielectric loss, ferroelectric and piezoelectric materials and their applications.	06
	Magnetic materials and Superconductivity	Origin of magnetism, basic idea of diamagnetic, paramagnetic, ferromagnetic and ferrite materials, Soft and hard magnetic materials, magnetostriction, magnetic anisotropy and applications of magnetic materials. Superconductivity, Introduction, type I and type II superconductors, Meissner's effect, isotope effect, effects of magnetic field, London's equations, penetration depth, specific heat, BCS theory (qualitative idea), high temperature superconductors, applications of superconductivity.	10
		Superconductivity.	Total=4

Recommended Books:

- 1. The physics of vibrations and waves, H. J. Pain, Wiley, 2006
- 2. Engineering Physics, H K Malik and AK Singh, Tata McGraw Hill
- 3. Concepts of Modern Physics, A. Beiser, Tata McGraw Hill
- 4. Introduction to Solids, L V Azaroff, Tata McGraw Hill
- 5. Introduction to Solid State Physics, Charles Kittel, Wiley India Pvt. Ltd.
- 6. Laser theory & Applications, K Thygrajan, A K Ghatak, Mc Millan India Ltd.
- 7. Materials Science, M S Vijaya, G Rangarajan, Tata McGraw Hill
- 8. Quantum Mechanics, D. J. Griffiths, Pearson Education

Robert Days

JB 8

Su

A 24

Shules

Payinda de Soll P

: Elements of Electrical Engineering

Subject Code

: ESEE-401

L	T	P	Credits	Weekly Load		
2	1	0	3	3		

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Apply the knowledge of Electrical Engineering principles to solve DC and AC circuits.

CO2: Formulate and analyze electrical circuits.

CO3: Understand basic principles of electromagnetism to implement in electrical machines and transformers.

CO4: Identify and select various electrical machines according to the applications.

CO5: Apply the ethical principles for troubleshooting & installation of safety devices as per norms of engineering practice.

Pre-requisite knowledge:

	C	O/PO I	Mappi	ng: (St	rong(3) / Med	lium(2) / Wea	ak(1) ii	ndicates	strengt	h of co	rrelatio	n):			
C		Programme Outcomes (POs)													Programme Specific Outcomes		
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	- 11	12	1	2	3		
CO1	3	1	1	1	1	1	1	1	2	2	1	3	1.	2	2		
CO2	2	3	1	1	1	1	1	1	2	1	1	2	1	1	2		
CO3	3	1	1	1	1	1	1	1	2	1	1	3	3	1	1		
CO4	3	2	1	1	1	1	1	1	2	2	1	1	2	1	2		
CO5	1	1	1	1	1	3	1	3	2	1	1	2	2	2	1		
Avg.	2.4	1.6	1	1	1	1.4	1	1.4	2	1.4	1	2.2	1.8	1.4	1.6		

Theory:

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Basic Element	Concepts of electric charge, current and electromotive force, potential and potential difference; conductor, semiconductor insulator and dielectric, electrical power and energy; basics of instruments used for measuring current, voltage, power and energy, methods and precautions, introduction to digital measuring instruments.	6
	Concepts of DC	Ohm's law, resistance, and color coding; capacitance and inductance, their ratings; effects of temperature on resistance, series and parallel connection of resistance, capacitances, Kirchhoff's laws and applications, network theorems	6
	AC Fundamentals	Concept of alternating voltage and alternating current, difference between AC and DC, various terms related with AC waves; RMS and average values, concept of phase difference and phasor, single phase and three phase supply; alternating voltage applied to pure	6

Rame John SE

N A Be2

Stubes

Pajinda at 1

		resistance, pure inductance, pure capacitance and their combinations, concept of impedance and power in AC circuit.							
	Three phase AC	The state of the s	6						
Unit-2	motive force (MMF), permeability; self and mutual induction, basic electromagnetic laws, effects on a conductor moving in a magnetic field, various losses in magnetic circuits.								
	Electrical Machines	Elementary concepts and classification of electrical machines, common features of rotating electrical machines, basic principle of a motor and a generator, need of starters and their classifications. transformer- classification, principle of operation, construction, working and applications.	9						
	Basic Electrical Installation and Protection	Basic testing and faults diagnosis in electrical systems, oscilloscopes, signal generators etc. basics of various protection and safety devices e.g. fuses, earthing, miniature circuit breaker (MCB) and earth leakage circuit breaker (ELCB) and their applications, replacement of different passive components e.g. lamps and lamp holders, switches, cables, cable connectors, electromagnetic relays.	9						

Recommended Books:

- 1. Edward Hugh, Electrical Technology, Pearson Education
- 2. DP Kothari & IJ Nagrath, Basic Electrical Engineering, Tata McGraw Hills
- 3. DP Kothari & IJ Nagrath, Electrical Machines, Tata McGraw Hills
- 4. S K Bhattacharya, Electrical Machines, Tata McGraw Hills
- 5. B.L. Thereja, A Textbook of Electrical Technology, S Chand; Twenty Third edition, 2002.

sound by JE by \$26

: Elements of Computer Engineering

Subject Code

: ESCS-401

L	T	P	Credits	Weekly Load
2	0	0	2	2

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Get acquainted with basics of computer system along with its various components

CO2: Know about various operating systems and memory

CO3: Study the C programming basics and learn the concept of operators

CO4: Understand the concept of decision statements and loops

CO5: Learn the use of functions, pointers, arrays, structures, union etc. For modular programming

Pre-requisite knowledge:

	C	O/PO	Mappi	ng: (St	rong(3) / Med	dium(2) / We	ak(1) ii	ndicate	streng	th of co	rrelatio	n):	
Cos	Programme Outcomes (POs)										Programme Specific Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COI	1	2	3	2	3	1	1	1	3	3	2	2	1	2	2
CO2	3	2	3	3	1	1	1	1	1	2	2	2	1	2	2
CO3	2	3	2	1	2	1	1	1	2	3	3	3	2	1	1
CO4	3	2	2	1	2	1	1	1	2	2	3	3	1	2	2
CO5	3	2	3	2	3	I	1	1	3	3	3	2	2	3	1
Avg.	2.4	2.2	2.6	1.8	2.2	1	1	1	2.2	2.6	2.6	2.4	1.4	2	1.6

Theory:

Unit	Main Topics	Course outlines	Lecture(s)		
Unit-1	Introduction	Introduction and characteristics of computer system, Generations, Classifications, Applications, Central Processing Unit, Memory, I/O devices, Introduction to operating system and its types, Algorithm, Flow chart.			
	C Programming Basics	Basic program construction, Structure of a C program, Compilation process, pre-processor directives, Comments, Data types, Type conversions, Operators - arithmetic, Relational, Logical, Conditional, Increment/decrement, Library functions, Header files.	04		
	Loops and Decision Statements	For loop, while loop, do loop, Various forms of if statement, switch statement, break statement, continue statement, go to statement.	04		
	Functions	Defining functions, Passing arguments to functions, Returning values from functions, Reference arguments and Storage classes.	04		
Unit-2	Pointers	Pointers, Pointers to pointers, Declaring and initializing pointers, Pointer expressions, Pointers and arrays, Pointers and strings.	04		

Rober Joy SE W

A 27

Shuly

Rojinda a Posinda De P

Arrays	Arrays and strings, Declaring an array, Initializing arrays, Accessing the array elements, Working with multidimensional arrays, Declaring and initializing string variables, String handling functions.	04		
Structures and Union	Declaring and initializing a structure, Accessing the members of a structure, Nested structures, Array of structures, Using structures in functions, Pointers and structures, Declaring and initializing a union.			
Files	Reading and writing to text and binary files, Character I/O, String I/O, File pointers, Error handling, Redirection, Command line arguments.	04		

Recommended Books:

1. Raja RamanV., Fundamentals of Computers, PHI.

2. Kernighan Brian W. and Ritchie, Dennis M, The C Programming language, Dorling Kingsley.

3. Balagurusamy, E., Programming in ANSI C, TMH Publications

sound by JE &

A 28

Must payinda a 12/

: Elements of Electronics Engineering

Subject Code

: ESEC-401

L	T	P	Credits	Weekly Load
2	0	0	2	2

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Design simple combinational and sequential logic circuits.

CO2: Characterize semiconductors, diodes and transistors.

CO3: Apply the basics of diode and transistor to analyse the operation of electronic devices.

CO4: Design electronic circuits such as rectifiers, filters, voltage regulators, transistor amplifiers and operational amplifiers.

Pre-requisite knowledge:

Cos	C	O/PO 1	Mappir				lium(2) Outcom			ndicates	streng	th of co	correlation): Programme Specific Outcom		
Cus	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	3	1	1	1	2	2	1	2	2	1	2	1	3
CO2	3	1	3	1	1	1	1 -	3	2	2	1	2	1		1
CO3	3	3	3	3	1	1	2	1	3	2	2	1		2	
CO4	3	1	3	1	3	1	2	2	2	3	3	1	1	2	1
Avg.	3	1.5	3	1.5	1.5	1	1.75	2	2	2.25	2	1.25	1	1.25	1.25

Theory

Unit	Main Topics	Course outlines	Lecture(s)					
Unit-1	Number system and codes Logic gates and flip flops	Decimal, binary, octal, and hexadecimal number system and their inter-conversions, Gray code, Excess-3 code. Definitions, symbols and truth table of NOT, OR, AND, NAND, NOR, XOR, XNOR gates, De-Morgan's theorems, realization of basic gates using universal gates; realization of simple Boolean equations using universal gates, introduction to K-map (3 variables), logic diagram, truth table and operation of latches and flip flops: RS, T, D, JK. Semiconductor materials: Ge Si intrinsic and extrinsic						
	Semiconductor devices	Semiconductor materials: Ge, Si, intrinsic and extrinsic semiconductors, p-type, n-type, p-n junction theory and diodes, its V-I characteristic, equivalent model, diode applications-half wave, full wave and bridge rectifier circuits, filter circuits: inductor filters, capacitor filters, L- section filters, π-section filters, comparison of filters, clippers and clampers, Zener diode, its characteristics and application as a voltage regulator, LED, photodiode.	8					

ears hay 28

W

A 29

Shuly

Royinda and I

Transistors	Bipolar junction transistor (BJT): basic operation, biasing, concept of dc load line and operating point selection, CB, CE, and CC configurations, BJT as an amplifier and switch, introduction to JFET and MOSFET: construction and operation.	8
Operational amplifiers (Op- Amps.)	Introduction, basic characteristics of ideal and practical Op- Amp, IC741 pin configuration, Op-Amp in different modes: inverting and non-inverting amplifier, basic applications: adder, subtractor, voltage follower, multiplier, differentiator & integrator, instrumentation amplifier.	8

Recommended Books:

- 1. Boylstad & Nashelsky, Electronic Devices & Circuits
- 2. Millman & Halkias, Integrated Electronics
- 3. Malvino, Electronic Principles
- 4. V.K. Mehta, Shalu Melta, Principles of Electronics
- 5. Donald L. Shilling & Charles Belowl, Electronic Circuits

: Applied Physics Lab

Subject Code

: BSPH-402

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Verify the theoretical formulations/ concepts of physics.

CO2: Know the art of recording the observations of an experiment scientifically.

CO3: Learn by doing.

CO4: Handle and operate the various elements/parts of an experiment.

CO5: Understand the importance of an experiment in engineering &technology

Pre-requisite knowledge:

Cos				Programme Specific Outcomes											
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1	1	1	1	2	2	3	2	1	3	1	1	1
CO2	3	3	3	2	3	2	2	1	2	1	2	2	2	1	3
CO3	3	1	2	1	1	3	3	3	3	. 2	3	3	1	1	1
CO4	3	3	1	1	1	2	2	2	2	3	1	1	2	1	3
CO5	2	1	3	1	1	2	3	2	2	2	2	2	2	1	3
Avg.	2.8	1.8	2	1.2	1.4	2	2.4	2	2.4	2	1.8	2.2	1.6	1	2.2

List of Experiments:

- 1. To determine the frequency of a tuning fork using sonometer.
- To determine the frequency of an electrically maintained tuning fork by Melde's experiment.
- 3. To investigate resonance in forced oscillations and to find the spring constant.
- 4 To verify the inverse square law of radiation using Photoelectric effect.
- 5. To determine the value of Planck's constant and photoelectric work function of the material of the cathode using photoelectric cell.
- To determine the frequency of an unknown signal by drawing the Lissajous patterns for various frequency ratios and evaluative the phase difference between two sinusoidal signals applied to X and Y inputs of cathode ray oscilloscope.
- 7. Determination of the value of e/m of an electron by helical method/Thomson method.
- 8. To determine the numerical aperture (NA) of a given multimode optical fibre by using laser beam.
- To study the V-I characteristics of semiconductor diode.
- 10. To find the band gap of the semiconductor material using diode in reverse bias.
- 11. To determine the wavelength of He-Ne laser by diffraction method.

Radios Day SE

M

A 31

Shuks

Payinda a 1

- Use of Michelson-Morley interferometer for determining the wavelength of He-Ne laser.
- 13. To find the Curie temperature of the given ferrite material.
- 14. To calculate the dielectric constant of the given dielectric material.
- To determine the specific rotation of sugar solution using Laurent's half-shade polarimeter.

pour ly SE

St Su A 202

. Shubs

Payinda a half

: Elements of Electrical Engineering Lab

Subject Code

: ESEE-402

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Apply the knowledge of Electrical Engineering principles to solve DC and AC circuits.

CO2: Formulate and analyze electrical circuits.

CO3: Understand basic principles of electromagnetism to implement in electrical machines and transformers.

CO4: Identify and select various electrical machines according to the applications.

CO5: Apply the ethical principles for troubleshooting & installation of safety devices as per norms of engineering practice.

Pre-requisite knowledge:

	C	O/PO I	Mappir	ng: (St	rong(3) / Med	lium(2) / Wea	ak(1) in	ndicates	strengt	th of co			2010
					Progra	ımme (Outcon	nes (Po	Os)				Programme Specific Outcomes		
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	11	2	3
CO1	3	1	1	1	1	1	1	1	2	2	1	3	1	2	2
CO2	2	3	1	1	1	1	1	1	2	1	1	2	1	1	2
CO3	3	1	1	1	1	1	1	1	2	1	1	3	3	1	1
CO4	3	2	1	1	1	1	1	1	2	2	1	1	2	1	2
CO5	1	1	1	1	1	3	1	3	2	1	1	2	2 .	2	1
Avg.	2.4	1.6	1	1	1	1.4	1	1.4	2	1.4	1	2.2	1.8	1.4	1.6

List of Experiments: (At least 10 experiments)

- Study of various passive components, measuring instruments, and their connections in electrical circuits.
- Verification of Kirchhoff's current and voltage laws.
- 3. Measurement of voltage, current, phase angle, power and power factor in RL, RC and RLC circuits
- 4. Implementation of various types of earthing.
- Study of various types of protection devices e.g. fuses, Miniature circuit Breaker (MCB) and Earth leakage circuit Breaker (ELCB)
- 6. Verification of Faraday's laws and Lenz's law.
- 7. Starting and reversing of DC and AC motors with various types of starters.
- 8. Verification of turns ratio of transformer
- 9. Determination of voltage regulation of transformer.
- 10. Fault diagnosis and removal in general electrical connection /apparatus.
- 11. To study the breakdown strength of transformer oil.
- 12. To measure the Insulation resistance of cable
- 13. Demonstration of cut-out sections of various machines.

court for SE

M

W &

3. Shuly

Pojinder and India

: Elements of Computer Engineering Lab

Subject Code

: ESCS-402

L	T	P	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Solve basic mathematical problems using programming

CO2: Demonstrate the use of loop statements to solve iteration problems

CO3: Implement the concept of modular programming and recursion using functions

CO4: Implementation of decision statements and loops

CO5: Create a file and add, append retrieve data using file handling

Pre-requisite knowledge:

	C	O/PO I	Mappii	ng: (Str	rong(3) / Med	lium(2) / We	ak(1) ii	ndicates	strengt	h of co	rrelatio	n):			
Cos		Programme Outcomes (POs)													Programme Specific Outcomes		
C03	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	3	2	3	3	1	1	3	3	3	2	. 2	1	2		
CO ₂	3	3	3	2	2	2	1	1	3	3	3	2	1	- 1	1		
CO3	3	3	3	2	3	2	1	1	3	2	3	3	2	1	î		
CO4	3	3	3	3	3	3	1	1	3	2	3	3	1	1	1		
CO5	3	3	3	3	3	3	1	1	3	3	3	3	1	1	1		
Avg.	3	3	3	2.4	2.8	2.6	1	1	3	2.6	3	3	1.4	1	1.2		

List of Experiments:

- 1. WAP to find multiplication of two numbers.
- 2. WAP to swap two numbers without using third variable.
- 3. WAP to calculate temperature in Fahrenheit to Celsius using formula C= (F-32)/1.8.
- 4. WAP to calculate Sum and Average of N numbers using sequence of statements.
- 5. WAP to convert integer arithmetic to a given number of day and month using switch case.
- WAP to find maximum out of 3 numbers a, b &c using Control Statements (if, else, nested if, nested else).
- 7. WAP to find minimum out of 3 numbers a, b & c using Control Statements (if, else, nested if, else)
- 8. WAP to find whether entered number is palindrome or not.
- 9. WAP to check entered number is even or odd.
- 10. WAP to find whether entered year is leap year or not.
- 11. WAP to find factorial of positive integer using for loop.
- 12. WAP to print all the number between 1 to 100 which are divisible by7 using the concept of
- 13. WAP to generate Fibonacci series up to n using loops.
- 14. Write a program to calculate area of circle using function.
- 15. Write an iterative function to calculate factorial of given number.
- 16. Write a recursive function to calculate factorial of given number

Rabord, Port SE

In A Re 34

- . Dlud

Muly Rajindar an In

- 17. WAP to find even & odd up to a given limit using the concept of array and loops.
- 18. WAP to reverse a string.
- 19. WAP to find addition of two matrix of n*n order using the concept of 2 dimensional array
- WAP to find multiplication of two matrix of n*n order using the concept of 2 dimensional array.
- 21. WAP program to study the concept of structure.
- 22. WAP to implement the concept of switch and break statements.
- 23. WAP to implement the concept of continue statements.
- 24. WAP to create a data file, retrieve data from the file.

Note: The above-mentioned list of experiments is suggested list. Teacher may add more programs/experiments as per requirement.

save lay de

W # 235

Shull pajinda and

: Elements of Electronics Engineering Lab

Subject Code

: ESEC-402

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Analyze and design various digital circuits using basic gates and flip flops.

CO2 Design practical circuits using semiconductor diodes.

CO3: Analyze various modes of transistors in different configurations.

CO4: Design circuits using transistors and Op-Amps.

Pre-requisite knowledge:

	C	O/PO I	Марріг		rong(3 Progra					idicates	sucing	in or co	Fcorrelation): Programme Specific Outcome			
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
CO1	3	1	3	3	2	2	1	1	3	2	1	2	2	11	2	
CO2	3	3	3	3	2	2	1	1	3	2	1	1	2	1	1	
CO3	3	3	1	3	2	2	1	1	3	2	1	2	I	1	1	
CO4	3	3	3	3	2	2	1	1	3	2	1	2	2	_1_	1	
Avg.	3	2.5	2.5	3	2	2	1	1	3	2	1	1.75	1.75	11	1.25	

List of Experiments:

- Verification of the truth tables of basic gates, e.g., 7400, 7402, 7404, 7408, 7432, 7486.
- 2. Design all other gates using NAND and NOR gates.
- 3. Design S-R flip-flop using NOR/NAND gates.
- 4. Verify the truth table of J-K flip-flop (7476), D flip-flop (7474) and T flip-flop.
- 5. To observe and analyze V-I characteristics of PN junction diode.
- To observe and analyze V-I characteristics of Zener diode.
- 7. Design and analysis of half wave rectifier with capacitor filter.
- 8. Design and analysis of center tap full wave rectifier with capacitor filter.
- 9. Design and analysis of bridge type full wave rectifier with capacitor filter.
- 10. Design and analysis of Zener as a voltage regulator.
- 11. To observe V-I characteristic of PNP and NPN transistor in common base configuration.
- 12. Design and analysis of Op-Amp as an inverting amplifier & non-inverting amplifier.
- 13. Design and analysis of Op-Amp as an integrator & differentiator.
- 14. To observe V-I characteristic of JFET.
- 15. To observe V-I characteristic of MOSFET.

come by SE

m

A Res

Shules

Rojinda and

: Surveying-1 : PCCV-511

Subject Code

 L
 T
 P
 Credits
 Weekly Load

 3
 0
 0
 3
 3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the importance of surveying in Civil engineering

CO2: Study the basic of linear/angular/direction measurements using chain/tacheometer/compass and theodolite and their applications

CO3: Study the method of determination of height of points using various leveling method and tacheometer.

CO4: Study the significance of Plane Table surveying in preparation of map and setting of different types of curves

CO5: Study the determination of coordinates using satellite-based method

Pre-requisite knowledge:

Cos	C	CO/PO Mapping: (Strong(3) / Medium(2) / Wéak(1) indicates strength of c Programme Outcomes (POs)													Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3		
COI	2	2	1	2	2	3	I	2	2	2	1	3	2	2	2		
CO2	2	3	2	2	3	2	1	2	2	2	1	2	3	2	2		
CO3	2	2	2	1	3	1	1	2	3	1	1	3	3	2	2		
CO4	1	2	2	2	3	1	1	1	3	2	2	3	3	2	3		
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3		
Avg.	2	2.4	2	2	2.8	1.8	1.2	1.8	2.6	1.8	1.4	2.8	2.8	2.2	2.4		

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Surveying	Definition, classification of surveys, Principle, distorted or shrunk scales, precision in surveying.	4
	Chain Surveying	Types of chains, tapes, ranging-direct & indirect, chaining on sloping ground, mistakes in chaining, corrections for linear measurements. Reconnaissance, station selection, limiting length of offsets, field notes.	4
	Compass Traversing	Types of compasses, bearings, meridians, declination, dip of magnetic needle, bearing of lines from included angles, local attraction, closing error and its removal.	4
	Theodolite	Types of theodolites, measurement of angles, temporary and permanent adjustments, closed & open traverse, omitted measurements, consecutive and independent co-ordinates,	4

paint by 28

4

A 40 37

Shules

Rajindar Del

		advantages and disadvantages of traversing closing error, Bowditch & Transit Rules	
	Leveling	Definitions of terms used in leveling, different types of levels, parallax, staff, temporary adjustments, bench marks, booking and reducing the levels, rise and fall method, line of collimation method, errors in leveling, permanent adjustments, corrections to curvature and refraction, setting out grades.	4
Unit-2	Contours	Definition, representation of reliefs, horizontal equivalent, contour interval, characteristics of contours, methods of contouring, contour gradient, uses of contour maps. Plane Table Surveying: Introduction to plane table surveying, principle, instruments, working operations, setting up the plane table, centering, leveling, Orientation, methods of plane table survey, two- and three-point problems, danger circle, Lehmann's Rules, errors.	5
	Tacheometry	Definitions and terms used in tacheometry, determination of constants, angular tacheometry with staff vertical and staff inclined, Merits and Demerits; Analytic lens, tangential method of tacheometry, subtense method of tacheometry.	4
	Trigonometric Leveling	Definitions & terms, curvature & refraction Methods: direct & reciprocal, eye and object correction, coefficient of refraction.	3
	Curves setting	Definition, elements of a simple curve, different methods of setting out a simple circular curve, elements of a compound curve, reverse curves, transition curves, their characteristics and setting out, vertical curves, setting out vertical curves, sight distances.	4
	Total Station	Working principle and survey with total station.	3
	Global Positioning Systems (GPS)	Working principle, Types of GPS, Corrections, Application of GPS. DGPS-working principle.	3
	Digital Elevation model	Introduction and application	2
	Field astronomy	Introduction, basic principle, and application	2
	Remote sensing	Basic concepts, Principle, and applications Photogrammetry: Concepts and application for map preparation	2

Rabel Day SE

In of

· Shit

Pajirda de l

Recommended Books:

- 1. Duggal, S.K., Surveying Vol I & II, Tata McGraw Hill
- Punmia, B.C., Jain, Ashok Kumar and Jain, Arun Kumar, Surveying Vol. I, II & III, Laxmi Publications
- 3. Agor, R., Surveying, Khanna Publishers
- Bhavikatti, S.S. Surveying & Levelling Volume I & II; I K International Publishing House Pvt. Ltd
- 5. Surveying volume I and II: B C Punmia; Laxmi Publications
- 6. Engineering Surveying (Sixth Edition): W. Schofield; CRC Press
- 7. Text Book of Surveying: C. Venkataramiah; Orient Blackswan Private Limited New Delhi
- Introduction to GPS: The Global Positioning System: Ahmed El-Rabbany; Artech House Publishers

some Day SE

for the 30

Shules Paginde

Pajinda a

: Fluid Mechanics

Subject Code

: PCCV-512

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the basic terms used in fluid mechanics and its broad principles

CO2: Estimate the forces induced on a plane/ submerged bodies

CO3: Formulate expressions using dimensionless approach and able to determine design parameters by creating replica of prototype at appropriate scale.

CO4: Apply the continuity, momentum and energy principles and design the pipelines used for water supply or sewage under different situation.

CO5: Calculate drag force exerted by fluid on the body of varying shapes and able to minimize them and addressing problems in open channel (lined/unlined) of different shapes and size optimally as per site condition.

Pre-requisite knowledge:

	C	O/PO N	Mappir	ig: (Str	rong(3)	/ Med	lium(2)	/ Wea	k(1) ir	ndicates	strengt	h of co	rrelatio	n):	
Cos	"	Programme Outcomes (POs)											Programme Specific Outcomes		
CUS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	2	2	1	1	2	1	2	3	3	3	2
CO2	3	2	2	2	2	2	2	1	2	1	2	3	3	2	3
CO3	3	3	2	3	2	2	2	1	2	1	2	2	3	3	3
CO4	3	3	2	3	3	2	2	1	2	1	2	3	3	3	3
CO5	3	3	3	3	2	2	2	2	2	2	3	2	3	3	3
Avg.	3	2.6	2.2	2.6	2.2	2	1.8	1.2	2	1.2	2.2	2.6	3	2.8	2.8

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Definition of a fluid and its properties, Types of fluids.	5
	Fluid statics	Differential equation of pressure field, Pascal law, Measurement of fluid pressure, force on submerged surfaces, Buoyancy and Flotation.	6
	Fluid kinematics	Methods of describing fluid motion, Velocity and acceleration of a fluid particle, Type of fluid flows, Displacement of a fluid particle, Continuity equation, Velocity potential and stream function, Flow net.	
	Fluid dynamics	Euler's equation; Bernoulli's equation; Momentum equation; Applications, Kinetic energy and momentum correction factors.	6

Reduce Pig JB

pr

\$ 40

Shuly

Rojindar and

Unit-2	Flow though pipes	Energy losses, Hydraulic gradient line and total energy line, Concept of equivalent pipe, Pipes in series and parallel, Flow through a siphon, and Transmission of power.	8
	Flow measuring devices	Venturimeter, Orifice meter, orifice, Pitot tube, Time of emptying tanks of different cross-sections.	4
	Dimensional analysis	Methods of dimensional analysis, Model studies. Pumps and Turbines: Introduction to various types of pumps and turbines.	6
	Pumps and Turbines	Introduction to various types of pumps and turbines.	5

Recommended Books:

- 1. Fluid Mechanics & Hydraulic Machines: Dr. R.K. Bansal; Laxmi Publications Pvt Ltd
- Hydraulic and Fluid Mechanic by P.N. Modi & S.M. Seth; STANDARD BOOK HOUSE
- Engineering Fluid Mechanics by R.J. Garde & A.G. Mirajgaoker; Nem Chand & Bros.; 3rd edition
- Fluid Mechanics by Douglas JF, Gasiorek JM, Swaffield JP; Pitman; Prentice Hall; 4th edition
- 5. Fluid Mechanics: Streetes VL & Wylie EB; McGraw Hill Higher Education
- 6. Fluid Mechanics by Potter, Cengage Learning; Cengage Learning; 4th ed. edition
- 7. Theory and application of fluid Mechanics including Hydraulic Mechanics by K Subramanya; McGraw-Hill Education Europe

some Doy JE

Jan

A 2041

Shuks

Rojinder and I

: Building Materials and Construction

Subject Code

: PCCV-513

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Identify different building components.

CO2: Understand concept of green buildings and materials

CO3: Characterize different materials used in construction along with their applications

CO4: Develop knowledge about physical and chemical properties along with advantages and disadvantages of materials used in construction.

CO5: Understand basic knowledge about installation of doors and window

Pre-requisite knowledge:

	CC)/PO N	lappin	g: (Stro	ong(3)	/ Medi	um(2)	/ Weal	$\kappa(1)$ in	dicates	strength	or cor	relation):	
		Programme Outcomes (POs)											Programme Specific Outcomes		
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COI	2	2	2	2	2	3	1	2	2	2	1	3	2	3	2
CO2	2	3	2	2	3	2	1	2	3	2	2	2	3	3	2
CO3	2	2	2	1	3	1	1	2	3	1	1	3	3	3	2
CO4	3	2	2	2	3	1	1	1	3	2	2	3	3	2	3
COS	2	3	2	2	3	2	1	2	3	2	2	2	3	3	2
Ave.	2.2	2.4	2	1.8	2.8	1.8	1	1.8	2.8	1.8	1.6	2.6	2.8	2.8	2.2

Theory

Unit	Main Topics	Course outlines	Lecture(s				
Unit-1	Cement	Cements composition, types of cement, manufacturing of ordinary Portland cement, testing of cement, special types of cement, storage of cement.	4				
	Stones	Classification, requirements of good structural stone, quarrying, blasting and sorting out of stones, seasoning of stone, deterioration of stones, common building stones of India.	4				
	Brick and Tiles	Classification of bricks, constituents of good brick earth, harmful ingredients, manufacturing of bricks, testing of bricks. Tiles, Terra cotta, manufacturing of tiles and terra cotta, types of terracotta, uses of terra-cotta, AAC blocks, hollow concrete blocks.					
	Mortars	Definition, proportions of lime and cement mortars, Classifications & Properties.	4				

Rave by SE for \$ \$2.42

	Concrete	Introduction, properties of concrete, water cement ratio, workability, compressive strength, grades, Production of Concrete: Batching, mixing, transportation, placing, compaction and curing of concrete, quality control of concrete, concrete mix design.	7				
	Special Concrete	Light weight concrete, high strength concrete, mass concrete, waste material-based concrete, shotcrete, fiber reinforced concrete.	4				
Unit-2	Admixtures and Super- plasticizers	Functions, classification, accelerating admixture, water reducing admixture, retarding admixture, air-containing admixture	4				
	Timber	Classification of timber, structure of timber, seasoning of timber, defects in timber, characteristics of good timber					
	Metals	Manufacture of steel, market forms of steel e.g., mild steel and HYSD steel bars, rolled steel sections. Thermo-Mechanically Treated (TMT) Bars.	4				
	Introduction to building construction	Basic building components (Foundation, plinth, wall, sill, lintel, roof, doors, windows, ventilators, staircases, sunshades etc.), Role of materials in construction, green building materials, fire resistance materials.	4				
	Miscellaneous Materials	Asphalt, Bitumen, insulating materials, materials for doors and windows, paints, Introduction to refractories, laminate, adhesives, graphene and carbon composites.	4				

Recommended Books:

- 1. Rangawala S.C. Engineering Materials Chortor Publishing House, Anand (1992).
- Gambhir M. L., Concrete Technology, Tata McGraw Hill Publishing Co. Ltd., New Delhi (2004).
- 3. Rangawala S. C., Engineering Materials, Charotar
- 4. S.K. Duggal Building Materials, New Age International Publications 2006.
- Bruntley L.R Building Materials Technology Structural Performance & Environmental Impact McGraw Hill Inc 1995.
- 6. R Chudley Construction Technology, Vol I IV Longman Group Construction Ltd. 1973

Robert Pary 28

An

A 43

Study Rajinder De

: Engineering Mechanics

Subject Code

: ESME-501

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the importance of mechanics in the context of engineering.

CO2: Calculate and analyze the various forces acting on engineering component

CO3: Analyse the different principles to study the motion of a body, and concept of relative velocity and acceleration.

CO4: Analyse various forces acting on elements of truss

CO5: Identify the basic elements of a mechanical system and write their constitutive equations.

Pre-requisite knowledge:

0	Programme Outcomes (POs) Speci												ogramme fic Outcomes			
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
COI	3	3	2	3	2	2	2	3	2	3	2	2	2	1		
CO2	2	3	3	2	3	. 3	3	2	3	2	3	3	1		_ 1	
CO3	2	2	3	3	2	2	2	3	2	3	2	2	1	2	2	
CO4	2	3	3	3	3	3	2	3	3	2	3	2	2	1	=	
CO5	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1	
Avg.	2.4	2.6	2.8	2.6	2.6	2.4	2.2	2.6	2.6	2.4	2.4	2.2	1.4	1.5	1.33	

Theory

Unit	Main Topics	Course outlines	Lecture(s
Unit-1	Fundamental of Mechanics	Mechanics and its relevance, Fundamental concept of mechanics and applied mechanics, idealization of mechanics, Basic dimensions and units of measurements, concept of rigid bodies, Laws of Mechanics	03
	Laws for Forces	Control Scalars and Vectors, Vector operations, Vector addition of forces, Force and its effects, characteristics of force vector, Bow's notation Force systems: Coplanar and Space force systems. Coplanar concurrent and non-concurrent forces. Free body diagrams	04
	Resultant and components of forces	Concept of equilibrium; Parallelogram law of forces, equilibrium of two forces; super position and transmissibility of forces, Newton's third law, triangle law of forces, different cases of concurrent, coplanar two forces systems, extension of parallelogram law and triangle law to many forces acting at one point.	04

come by di

Se 4

De 44

Studes

Rajinda De

fy?

	Polygon law of forces	Triangle law to many forces acting at one point - polygon law of forces, method of resolution into orthogonal components for finding the resultant, graphical methods, special case of three concurrent, coplanar forces, Lami's theorem	04
	Moments & Couples	Concept of moment, Varignon's theorem, Principle of moments, Moment of forces about a specified axis, concept of couple - properties and effect, Moment of couple, Movement of force on rigid body, Resultant of force and couple system, Reduction of force and couple system, Parallel forces - like and unlike parallel forces, calculation of their resultant.	04
	Trusses	Simple trusses, analysis of simple truss, Method of Joints, Method of sections	04
Unit-2	Friction	Concept of friction, Characteristics of Dry friction, Laws of Coulomb friction, limiting friction, coefficient of friction; sliding friction and rolling friction, Belt friction, Ladder friction.	04
	Centre of gravity and Moment of Inertia	Concept of gravity, gravitational force, centroid and centre of gravity, centroid for regular lamina and centre of gravity for regular solids. Position of centre of gravity of compound bodies and centroid of composite area. CG of bodies with portions removed, Moment of Inertia: First and second moment of area; Radius of gyration, Moment of inertia of simple and composite bodies.	06
	Simple Lifting Machines	Concept of machine, mechanical advantage, velocity ratio and efficiency of a machine, their relationship, law of machine, Simple machines: Wheel and axle, pulley systems, Simple screw jacks	03
	Kinetics of a particle	Types of motion, linear motion with uniform velocity, uniform & varying acceleration, motion under gravity, motion of projectiles, concept of relative and resultant velocity. Newton's laws of motion, equation of motion for system of particles, D' Alembet's Principle, Motion of connecting bodies. Concept of momentum, Impulse momentum, Conservation of momentum and energy, Principle of work and energy	06
	Kinetics of a rigid body	Introduction, Equation of motion for a rigid body, Angular Motion of Rigid Bodies, D'Alembert's principle applied to bodies having linear and angular motion. Equation of dynamic equilibrium, Maximum acceleration and retardation of vehicles running on inclined planes.	06

Robert Day JE

W

A 45

Shukes

Payinda and

Recommended Books:

- 1. J. L. Mariam & L. G. Kraige, Engineering Mechanics. John Wiley & Sons
- 2. R. C. Hibbeler, Engineering Mechanics (Static & Dynamics), Prentice Hall
- 3. Beer & Johnston, Engineering Mechanics (Static & Dynamics), McGraw Hill
- 4. Boresi&Schimidt, Engineering Mechanics (Static & Dynamics), Cengage Learning
- 5. R. K. Rajput, Engineering Mechanics, Dhanpat Rai Publication, New Delhi
- 6. S. Rajshekharan, Engineering Mechanics, VIkas Publishing House, New Delhi

Robert Son A Fee But Payinder and I

: Principles of Management

Subject Code

: HSMC-501

L	Т	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: The scope of this paper is to familiarize students with the concepts of OB knowledge to practices. management

CO2: This course aims to provide insights necessary to understand behavioural processes at individual, team and organizational level

CO3: To enable students to learn how to influence the human behaviour in organisations.

CO4: To understand the behaviour of employees which affect the organisational environment.

CO5: To achieving higher productivity and accomplishing goals of the organization.

Pre-requisite knowledge:

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co													fic Outcomes				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3			
CO1	3	3	3	1	1	1	1	2	1	2	1	2	1_	2	1			
CO2	3	3	3	1	1	1	2	3	3	2	2	2	11	2	2			
CO3	3	3	3	1	1	2	1	3	2	2	1	2	1	2	1			
CO4	3	3	3	1	1	2	3	2	2	1	1	2	1	1	2			
COS	3	3	3	1	1	1	1	2	3	1	2	2	1-	3	1			
Avg.	3	3	3	1	1	1.4	1.6	2.4	2.2	1.6	1.4	2	18	2	1.4			

Theory:

Unit	Course outlines	Lecture(s)
Unit-1	Definition of management, science or art, manager vs. entrepreneur; Types of managers' managerial roles and skills; Evolution of management- scientific, human relations, system and contingency approaches, Corporate Social Responsibility	10
	Current trends and issues in management. Nature and purpose of Planning, types of Planning, objectives, setting objectives, policies, Strategic Management, Planning Tools and Techniques, Decision making steps & processes.	12
Unit-2	Nature and purpose of Organizing, formal and informal organization, organization structure, types, line and staff authority, departmentalization, delegation of authority, centralization and decentralization, job design, human resource management, HR planning, Recruitment selection, Training & Development, Performance Management, Career planning and	14
	Management.	~

motivational techniques, job so theories of leadership, effective	p behavior, motivation, motivation theories, tisfaction, job enrichment, leadership, types & e communication.
control techniques, use of	computers and IT in management control, nagement, control and performance, direct and

Recommended Books:

1. Robins S.P. and Couiter M., Management, Prentice Hall India, 10th ed., 2009.

2. Stoner JAF, Freeman RE and Gilbert DR, Management, 6th ed., Pearson Education, 2004.

3. Tripathy PC & Reddy PN, Principles of Management, Tata McGraw Hill, 1999.

Rahmy Son JE

\$ 48 \$ 0.48

Ships

Rojinda and Ind

: Surveying-I Lab

Subject Code

: PCCV-514

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the concept, various methods and techniques of surveying

CO2: Compute angles, distances and levels for given area

CO3: Apply the concept of tachometry survey in difficult and hilly terrain.

CO4: Select appropriate instruments for data collection and survey purpose

CO5: Analyze and retrieve the information from remotely sensed data from GIS and GPS and analyze the geographical data

Pre-requisite knowledge:

22	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co Programme Outcomes (POs)												Pr	Programme ecific Outcomes				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3			
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3			
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3			
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2			
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3			
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3			
Avg.	2.2	2.4	2.2	2	2.8	- 2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8			

List of Experiments:

- 1. Measurement of distance/Offsets, ranging a line with Chain and tape.
- Measurement of bearing and angles with compass, adjustment of traverse by graphical method.
- 3. Different methods of levelling, height of instrument, rise & fall methods.
- Measurement of horizontal and vertical angle by theodolite.
- 5. Preparing a contour map.
- 6. Plane table survey, different methods of plotting, two point & three point problem.
- 7. Determination of height of an inaccessible object.
- 8. Setting out a transition curve, setting out of circular curves in the field using different methods.
- 9. Introduction of Total Station.

Robert Joy JE

N

A 49

Muly pojinda and

: Fluid Mechanics Lab

Subject Code

: PCCV-515

L	T	P	Credits	Weekly Load
0	0	2	1	2

COURSE OUTCOMES:

After successful completion of course, the students should be able to

CO1: Understand the basic terms used in fluid mechanics and its broad principles

CO2: Estimate the forces induced on a plane/ submerged bodies and formulate expressions using dimensionless approach and able to determine design parameters by creating replica.

CO3: Apply the continuity, momentum and energy principles and design the pipelines used for water supply or sewage under different situation.

CO4: Calculate drag force exerted by fluid on the body of varying shapes and able to minimize them.

CO5: Design and addressing problems in open channel (lined/ unlined) of different shapes and size optimally as per site condition.

	C	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):																
	Programme Outcomes (POs)													Programme ecific Outcomes				
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3			
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3			
CO3	2	3	2	2	3	2	1	2	3	1	1	3	3	2	2			
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3			
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3			
Ave	2.2	2.6	2.2	2.0	2.8	2.2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8			

List of Experiments:

- 1. Verification of Bernoulli's Theorem
- 2. Calibration of venturimeter/orifice meter
- 3. Determine viscosity of a liquid by Redwood Viscometer
- Determination of hydrostatic force and its location on a vertically immersed surface
- 5. Determination of friction factor for pipes of different materials
- Determination of hydraulic coefficients of an orifice
- Visualization of laminar and turbulent flow.

Sto for of

Onward

Title of the course

: Building Material and Construction Lab

Subject Code

: PCCV-516

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes: After successful completion of course, the students should be able to

CO1: Understand the relevance of different properties of constituent materials on properties of concrete.

CO2: Understand the behavior and durability aspects of concrete under different loading and exposure conditions.

CO3: Design of concrete mixes as per BIS specifications.

CO4: Understand various testing methods for concrete and their applicability.

CO5: Knowledge of special type of non-conventional concretes.

Pre-requisite knowledge:

			misite i		-0					92					
	C	O/PO	Mappi	ng: (St	rong(3) / Med	lium(2) / We	ak(1) ii	ndicates	streng	th of co	rrelatio	n):	
COs			,		rogramı fic Out										
003	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	3	3	3	3	1	2	2	2	1	3	2	3	3
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3
CO3	2	2	2	2	3	1	1_	2	2	1	2	3	3	2	2
CO4	2	2	2	2	2	2	1	1	3	2	2	3	3	2	2
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
Avg.	2.2	2.6	2.4	2.2	2.8	2.0	1.2	1.8	2.4	1.8	1.8	2.8	2.8	2.6	2.6

List of Experiments:

- 1. Tests on cement (fineness, consistency, initial and final setting time and strength test).
- 2. Tests on fine and coarse aggregates (gradation, specific gravity, water absorption).
- 3. Design of concrete mix for required grade of concrete.
- 4. Tests on fresh concrete (workability test).
- 5. Tests on hardened concrete (compressive strength, flexural strength and split tensile strength).

Robert Joy SE IN

\$ \$2.51

Ships

Payinda an half

: India Constitution

Subject Code

: MCMH-501

L	T	P	Credits	Weekly Load
3	0	0	0	3

Course Outcomes:

After successful completion of course, the students should be able to CO1: History, formation and silent features of Indian Constitution.

CO2: Fundamentals Rights and Duties.CO3: Directive Principle of State Policy.

CO4: Various Protections in respect of Life and Personal Liberty.
 CO5: Various Rights pertaining to religion, cultural and education.

Pre-requisite knowledge:

	C	O/PO	Марріг	ng: (Str	rong(3	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
				3	Progra	mme (Outcon	nes (Po	Os)				Programme Specific Outcomes		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	-	Se.	5 7 .6		82	3	-	3	2	-	3 e 3	2	625	2	-
CO2	×	(i+)		×		3		3	2	2-	2962	2	8.00	2	
CO3	-	1.0	1	2		3	2	3	2	-	846	2		2	(0)
CO4	*		180	- 3	16	3		3	2	-	7/4:	2	74:	2	-
CO5	-			5	-	3		3	2	5	7,€	2	•	2	-
Ave.	(•))	-	-	-	-	3	-	3	2	3 4 5	13-51	2	5.00	2	

Theory:

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction to Indian Constitution	Salient features of Indian Constitution, Nature of Indian Constitution-Unitary or Federal, Preamble of Constitution, Citizenship	10
	Fundamental Rights-I	Definition of State (Article-12), Laws inconsistent with Fundamentals Rights (Article-13), Right to Equality (Article 14-18)	10
Unit-2	Fundamental Right-II	Freedom of speech & Expression (Art 19), Protection in respect of conviction of offences (Art 20), Protection of Life & Personal Liberty (Art 21), Safeguards against arbitrary arrest & detention (Art 22)	10
	Fundamental Right-III	Right against Exploration (Art 23-24), Right to Freedom of Religion (Art 25-28). Cultural & Educational Right (Art 29-30). Right to Constitutional remedies (Art 32-35)	10

Rahad. Phys

88 fr

\$ 52 \$ 0.52

Sluby

Rojinda a ...

Principles &	Directive Principles of State Policy (Art 36-51), Fundamental Duties (Art 51A), Basic Features of Constitution & Procedure for Amendment of Constitution	08
--------------	--	----

Recommended Books:

- 1. N.Shukla, Constitution of India, Eastern Book Agency, 2014
- 2. P.Jain Indian Constitution Law, Lexis Nexis, 2013
- 3. D. Basu, Introduction to Indian Constitution, of India (20th Ed.2009)
- 4. M.Seervai, Constitutional Law of India, Universal Law Publishing Co. Reprint 2013
- Glanville Austin, Indian Constitution -cornestone of the Nations, Oxford University Press, 1999
- 6. M.Bakshi The constitution of India, Universal Law Publishing Co 2014
- 7. D.Basu shorter Constitution of India (14th Ed.2008, reprint 2010)

Rahm! Pory JE

far

\$ \$e.53

Stube

Rajinda de LA

: Numerical and Statistical Methods

Subject Code

: BSMA-501

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

The course aims to shape the attitudes of learners regarding the field of statistics. Specifically, the course aims to motivate in students an intrinsic interest in statistical thinking and Instil the belief that statistics is important for scientific research.

Upon completion of this course, the student will be able to:

CO1: Understand the concept of errors in numerical methods.

CO2: Find the roots of equations using different methods and discuss the convergence of the solution.

CO3: Understand the concept of different operators and their applications in solving numerical differentiation and integration.

CO4: Solve numerically ordinary differential equations of first order.

Des requisits knowledge

	C	O/PO	Mappii		rong(3) Progra					naicates	strengt	n or co	Pı	rogrami fic Out	
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	2	2	3	2	3	3	2	2	3	1	2
CO2	3	3	3	3	2	2	3	2	3	3	2	2	3	2	2
CO3	3	3	3	3	2	2	3	2	3	3	2	2	3	1	3
CO4	3	3	3	3	2	2	3	2	3	3	2	2	3	1	2
Avg.	3	3	3	3	2	2	3	2	3	3	2	2	3	1.25	2.25

Theor Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Errors and Solution of Equations	Errors in arithmetic operations and functions: Round-off error, truncation error, absolute error, relative error, percentage error. Intermediate value property, Descartes Rule of signs. Bisection method, Method of false position, Secant Method, Newton-Raphson method, Iteration method. Convergence of these methods. Gauss Elimination method (with and without partial pivoting). Jacobi, Gauss-Seidel methods.	10
	Finite Difference and Interpolation	Finite differences: forward, backward and central differences, Shift and averaging operators, Newton's forward, backward and divided difference interpolation formulae, Lagrange's formula.	6

	Numerical differentiation , integration and solution of ODEs	Numerical differentiation using Newton's forward and backward difference formulae. Numerical integration: Trapezoidal rule, Simpson's one third and three-eighth rules. Error in integration. Solution of ODE of first order: Taylor series method, Picard's method, Euler method, Modified Euler's method and Runge-Kutta methods.	7
Unit-2	Curve fitting	Curve fitting by the method of least squares: fitting of straight lines, second degree parabolas and more general curves.	5
	Statistics	Measures of central tendency, measures of dispersion, coefficient of variation, relation between measures of dispersion, moments, skewness, kurtosis, Karl Pearson coefficient of correlation.	8
	Probability .	Definition of probability, laws of probability, Baye's theorem, Random variable, Mathematical Expectation, Moment generating function, Probability distributions: Binomial, Poisson and Normal.	9

Recommended Books:

- 1. S.S. Sastry, Introductory Method of Numerical Analysis, PHI (2005).
- M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computations, New Age International (2007).
- 3. B. S. Grewal, Numerical Methods in Engineering & Science, Khanna Publishers, 2011.
- S.C. Gupta & V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons (2014).
- A. M. Goon, M. K. Gupta and B. Dasgupta, An Outline of Statistical Theory, Vol. 1, World Press Pvt. Ltd (2013).
- 6. S. P. Gupta, Statistical Methods, S. Chand & Co., 43rd Edition, 2017

A

A 2055

Shuly Pajinda and

Robert

: Solid Mechanics

Subject Code

: PCCV-521

L	Т	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1:Identify and quantify all forces associated with a static framework/ plane force systems.

CO2:Evaluate axial stresses and strains in various determinate and indeterminate structural systems.

CO3:Draw shear force diagram and bending moment diagram in various kinds of beams subjected to different kinds of loads.

CO4:Evaluate the different types of stresses (Bending/Shear) in flexural members.

CO5:Determine deformations and deflections in various kinds of beams.

Pre-requisite knowledge:

		011 0 1	мрри		Progra						strengt		Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	3	2	2	2	3	1	2	2	2	1	3	2	3	3
CO2	3	3	2	2	3	2	1	2	2	2	2	2	3	3	3
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3
CO5	3	3	2	2	3	2	1	2	2	2	2	2	3	3	3
Avg.	2.6	2.6	2.0	2.0	2.8	2.0	1.0	1.8	2.4	1.8	1.6	2.6	2.8	2.6	2.8

T	٤.	-	-	-	_
	n	e	n	r	٦

Theo Unit	Main Topics	Course Description	Lecture(s)
Unit-1	Introduction of equilibrium of bodies	Concept of Free-body diagrams and conditions of equilibrium of bodies, static determinacy.	8
	Axial Stress and Strain	Concept of stress, strain, elasticity and plasticity; one- dimensional stress-strain relationships; statically determinate and indeterminate problems, compound and composite bars	8
Unit-2	Shear Force and Bending Moment Diagrams	Types of load on beams, classification of beams; axial, shear force and bending moment diagrams: simply supported, overhanging and cantilever beams subjected to any combination of point loads, uniformly distributed and varying load and moment.	10
	Bending & Shear Stresses in beams	Derivation of flexural formula for straight beams, concept of centroid and second moment of area, bending stress	10

Robert

Por 28 1

\$ 56

. Study

Rojinda a ful

	calculation for beams of simple and built up sections, flitched beams. Shear stress formula for beams, shear stress distribution in beams	
Deformations	Governing differential equation for deflection of straight beams having constant flexural rigidity, Double Integration, Macaulay's, Moment Area and Conjugate Beam method for determining slopes and deflection in beams.	8

Reference Books:

1. Mechanics of materials, R. C. Hibbeler, Pearson, Tenth edition, 2016.

2. Mechanics of materials, F.P. Beer, E.R. Johnston, D. Mazurek, McGraw-Hill Higher Education, 2011.

come Dix 28 W

A 2057

Shuly

Rojinda a Mil

: Transportation Engineering-I

Subject Code

: PCCV-522

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Quantify the specifications of various road construction materials required

CO2: Perform geometric design of highways and expressways

CO3: Perform analysis and design of flexible and rigid pavements

CO4: Address highway maintenance, drainage and economic issues

CO5: Perform the traffic studies necessary before making changes to or designing new road Infrastructure

Pre-requisite knowledge:

		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of c Programme Outcomes (POs)													Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3		
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3		
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3		
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2		
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3		
	2	3	3	3	3	2	2	2	3	2	2	3	3	3	3		
CO5	2.2	2.4	2.2	2	2.8	2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8		

Theory

Unit	Main Topics	Course outlines	Lecture(s)					
Unit-1	General	Different modes of transport, Development of Transport System, Phased development of Roads in India, Planning & Management of Highways, Various road plans developed in India, Road patterns, Highway Surveys & Alignment, Design, Drawings, Estimates & Project Report	6					
	Traffic Studies	Road user characteristics, Importance of traffic studies, spot speed, speed and delay and origin and destination studies. Traffic accident studies, Causes of accidents and Remedial Measures, Parking studies						
	Geometric Design Highways Introduction, Highways Classification, Right of way, Width of formation, Sight Distances, Stopping site distance, overtaking sight distance, overtaking zones, camber, Road Curves, Transition Curves, Super elevation, Widening at curves, IRC code							

Rahul, Dy

28 N

\$ \$2.58

Shuly

Rayinda De John

		recommendations for various geometric design parameters, Road Safety Audits, Highway capacity & Intersection design					
	Construction of Roads	Various types of bituminous layers constructions and their selection, specifications for embankments, subgrade, granular subbase, water bound macadam, wet mix macadam, surface dressing, premix carpet, bituminous macadam, dense bituminous macadam, bituminous concrete, mastic asphalt, stone matrix asphalt, dry lean concrete, cement concrete pavements, Importance & Principles of Highway Drainage, Surface Drainage & Sub-Surface drainage	8				
Unit-2	Types of bituminous binders and Mix design	Manufacturing of bitumen, Paving bitumen specifications as per IS 73: 2013, comparison between bitumen, tar, cut back & emulsion, Modified binders and its rheology, Design of bituminous mixes: Requirement of bitumen mixes, design of bituminous mixes as per Marshall Stability & flow method, parametric evaluation of bituminous mixes, IRC & MORTH recommendations for the design mix of various layers of pavements	8				
	Pavement Design	Factors affecting design of pavements, design principles & design procedures as per IRC 37 guidelines, Design of PQC pavements as per IRC 58 & SP62, Use of software's IITPAVE, KENPAVE					
	Failures of flexible and rigid pavements & Highway Maintenance	Causes of Failures and Remedial Measures, Maintenance of flexible and rigid pavements, pavement evaluation and	6				

Recommended Books:

 Sharma & Sharma; Principle and Practice of Highway Engineering, Asia Publishing House, New Delhi (2010).

 G.V.Rao, Tata McGraw Hill, New Delhi Principles of Transportation and Highway Engineering (2002)

3. Yoder E. J.; Principles of Pavement Design, John Wiley & Sons (2011)

Row Joy St In

A Reso

Bluby Rajinda a 1

: Design of Concrete Structures

Subject Code

: PCCV-523

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: To impart fundamental knowledge of the behavior and properties of reinforced cement concrete as a structural material.

CO2: To develop the ability to analyze and design various structural elements such as beams, slabs, columns, and footings as per relevant IS codes.

CO3: To familiarize students with the limit state method of design, emphasizing safety, serviceability, and economy.

CO4: To enable students to interpret and apply design standards, specifications, and detailing practices in RCC structures.

CO5: To cultivate problem-solving skills and practical understanding for real-world civil engineering applications involving RCC construction.

		O/PO I		Programme Specific Outcomes											
Cos	PO	PO 2	PO 3	PO 4	Progra PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	3	3	2	2	3	1	2	2	2	1	3	2	3	3
CO2	2	3	3	1	3	2	1	2	2	2	2	3	3	2	2
CO3	2	3	2	2_	3	1	1	2	3	2	2	3	3	2	3
CO4	2	2	2	2	3	2	2	2	3	2	2	3	3	3	3
CO5	2.4	2.8	2.6	2.0	2.8	2.0	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8

Theory		Course outlines	Lecture(s)					
Unit	Main Topics	Course outlines	6					
Unit-1	Introduction	Reinforced concrete, definition, properties of materials, grades of concrete and reinforcing steel, stress-strain curves, permissible stresses, design philosophies: working stress design, ultimate strength and limit state design method.						
	Limit State Design Method	Introduction, Limit States, Characteristic values, characteristic strength, characteristic loads, design values for						
	Limit State of Collapse (Flexure)	Types of failures, assumptions for analysis and design of singly reinforced, doubly reinforced, and flanged sections,						

		esign of Lintels, Design of one-way slabs and two-way ctangular slabs.					
Limit Stat Collapse (S bond torsion)	hear, su	troduction - Design for shear, structural components bjected to torsion, design of rectangular beam section for rsion, development length, the continuation of inforcement (beyond cut-off points).	6				
Limit Stat Serviceabili	ty me	effection, effective span to effective depth ratio, odification factors for singly reinforced, doubly reinforced d flanged beams, crack formation and its control	6				
Unit-2 Limit Stat Collapse (Compression	on) cla	mit State of Collapse (Compression): Columns and their assification, reinforcement in columns, assumptions, short d long (both tied and helical) columns subjected to axial ad, short columns subject to axial, uniaxial and biaxial ending, Interaction Diagrams	8				
Limit State Design of miscellaneo structures		Design of isolated footings, Design of staircases.					
Introductio Working S Design Met	Stress SI						

Recommended Books:

- 1. Reinforced Concrete Design, Pillai &Menon, Tata McGraw Hill Publishers(2022).
- 2. Limit State Design of Reinforced Concrete, Varghese, P. C., Prentice Hall of India(2008).
- 3. Fundamentals of Reinforced Concrete, Sinha, S. N. and Roy, S Chand Publishers(2014)

Rabel Voy SE W St. Shill payinder and I V

: Hydrology and Ground Water

Subject Code

: PCCV-524

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1:To understand the components of the hydrologic cycle and their relevance in water resource engineering.

CO2:To develop skills in measurement, estimation, and analysis of precipitation and abstractions such as evaporation and infiltration.

CO3:To learn methods of streamflow measurement and discharge computation using various hydraulic structures and instruments.

CO4:To analyze flood data using frequency analysis methods and understand flood routing techniques.

CO5:To study the principles of groundwater hydraulics including aquifer properties, Darcy's Law, and steady flow towards wells.

Pre-requisite knowledge:

				Programme Specific Outcomes											
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	2	3	2	2	3	1.	2	2	2	1	3	2	3	3
CO2	3	3	2	1	3	2	1	2	2	2	2	2	3	3	3
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3
COS	3	2	2	1	3	2	1	2	3	2	2	2	3	3	3
Avg.	2.6	2.2	2.2	1.6	2.8	2.0	1.0	1.8	2.6	1.8	1.6	2.6	2.8	2.6	2.8

Theory

Unit	Main Topics	Course outlines	Lecture(s)							
Unit-1	Introduction	Hydrologic cycle, Scope and Applications								
	Precipitation	Measurement by rain gauge and other methods, estimation of missing data, consistency of records, optimum number of rain gauge station, mean precipitation, presentation and analysis of rainfall data								
	Abstractions from Precipitation	Evaporation, factors affecting evaporation, measurement, infiltration, factors affecting infiltration, measurement, infiltration indices	8							
	Stream flow measurement	Velocity measurement: floats, velocity rods, current meters, discharge computation: velocity area method, moving boat	10							

sourt fly SE

In \$ 2002

Studes

Pajinda a 1

		method, slope area method, stage discharge curve, notches, weirs, venturiflume, standing wave flume, free overfall	
Unit-2	Floods Frequency analysis	Peak flood estimation, methods of frequency analysis, flood routing	10
	Ground Water Hydraulics	Type of aquifers, aquifer constants, Darcy's law, Steady flow towards fully penetrating well, Equation of motion and its applications to ground water flow problems, introduction to the use of distributed groundwater	8

Recommended Books:

- Chow, V.T., Maidment, D.R., and Mays, L.W., Applied Hydrology, Mc-Graw-Hill International Editions, New York (2006)
- Misstear, B., Banks, D., and Clark, L., Water Wells and Boreholes, John Wiley& Sons Ltd, UK(2013)
- 3. Shaw, E.M., Beven, K.J., Chappell, N.A., and Lamb, R., Hydrology in Practice, Spon Press, New York(2014)
- Viessman, W. and Lewis, G.L., Introduction to Hydrology, Prentice Hall of India Pvt Limited, New Delhi (2012)

enne por de for

\$ 63 Re⁶³ Shuly Rojinda an Wh

: Biology for Engineers

Subject Code

: BSBL-501

L	T	P	Credits	Weekly Load
2	0	0	2	2

Course Outcomes:

On successful completion of the subject, the students will be able to

CO1 Learn about correlation between biological science and engineering.

CO2 Understand about the concept of microbiology, genetics, and macromolecules.

CO3 Learn the techniques of microbiological enumerations, food spoilage and preservation.

CO4 Familiarize with economic aspects of biological intervention.

CO5 Familiarize with various aspects of metabolic pathways.

Pre-requisite knowledge:

Cos	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of cor Programme Outcomes (POs)												Pi	Programme Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
CO1	2	1	2	2	3	3	1	3	3	3	3	1	3	1	2	
CO2	3	3	1	3	3	3	3	3	3	3	3	2	2	2	2	
CO3	1	3	3	2	3	3	3	3	3	3	3	1	3	2	3	
CO4		3	2	1	3	1	3	3	3	3	3	3	3	2	2	
CO5	3	3	3	3	3	3	3	3	3	1	3	3	2	2	2	
Avg.	2	2.6	2.2	2.2	3	2.6	-2.6	3	3	2.6	3	2	2.6	1.8	2.2	

Theory:

Unit	Main Topics	Course outlines	Lecture(s)						
Unit-1	Introduction	Importance of biology in engineering, development of technological subjects imitating nature's biological entity, major discoveries in biology, economic aspects of biology in exploitation.							
	Classification	Concept of scientific classification of living entity, discuss the classification (with suitable example) based on: (a) cellularity-unicellular and multicellular (b) ultrastructure- prokaryotes and eukaryotes (c) energy and carbon utilization- autotrophs, heterotrophs and lithotrophs (d) ammonia excretion- aminotelic, uricotelic and ureotelic (e) molecular taxonomy- three major kingdoms of life, classification of microorganisms based on: (a) temperature (b) salt concentration (c) oxygen requirement							
	Genetics	Concept of genetics, Mendel's laws, segregation and independent assortment, allele, meosis and mitosis, recessiveness and dominance, how genetic material passes from parent to offspring difference between phenotypic and genotypic characteristics							

Reduct Hop

3 h

De Between men

Studes

Pajinda an fort

		DNA fingerprinting, exploitation of genetics in crop improvement and microbial potential towards fermentation/ fermented product.	
	Microbiology	Microorganisms, classification of microorganisms, techniques such as serial dilution, pour plating, streak plating, spread plating, nutrient agar and broth. Techniques for enumeration of bacteria, growth kinetics, concept of food spoilage and preservation technique.	5
Unit-2	Biomolecules	Biomolecules as building blocks of biological subjects, introductory information about carbohydrates, proteins, nucleotides, and DNA/RNA, structure of protein (primary, secondary, tertiary, quaternary), structure of monosaccharides (glucose, fructose), disaccharides (sucrose, maltose) and polysaccharides (starch, cellulose).	4
	Enzymes	Enzyme, enzymology, role of enzymes in biological system, mechanism of enzymatic action, role of prosthetic group, co-factor and co-enzymes in enzymatic reactions, classification of enzymes, application of enzymes in: (a) juice clarification (b) meat tenderization (c) enzymatic browning.	4
	Metabolism	Concept of thermodynamics and application in biological system, photosynthesis, glycolysis, Krebs cycle, exothermic and endothermic reactions, endergonic and exergonic reactions.	5

Recommended Books:

- 1. Neil A. Campbell, Biology: A global approach
- 2. Eric E Conn, Outlines of biochemistry
- 3. Prescott, Microbiology
- 4. Gunther S. Stent, Molecular genetics

en loy de to

A 65

Shules Rajindar and May

: Numerical and Statistical Methods Lab

Subject Code

: BSMA-502

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

The course aims to shape the attitudes of learners regarding the field of statistics. Specifically, the course aims to motivate in students an intrinsic interest in statistical thinking and Instil the belief that statistics is important for scientific research.

Upon completion of this course, the student will be able to:

CO1: Understand the concept of errors in numerical methods.

CO2: Find the roots of equations using different methods and discuss the convergence of the solution.

CO3: Understand the concept of different operators and their applications in solving numerical differentiation and integration.

CO4: Solve numerically ordinary differential equations of first order.

Pre-requisite knowledge:

		0/10/	ларри		Progra					2			The same of the sa	Programme Specific Outcomes	
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	2	2	3	2	3	3	2	2	3	1	2
CO2	3	3	3	3	2	2	3	2	3	3	2	2	3	2	2
CO3	3	3	3	3	2	2	3	2	3	3	2	2	3	1	3
CO4	3	3	3	3	2	2	3	2	3	3	2	2	3	1	2
Avg.	3	3	3	3	2	2	3	2	3	3	2	2	3	1.25	2.25

List of Programmes:

- 1. Finding roots of the equation f(x) = 0 using
 - i) Bisection Method
- ii) Secant Method
- iii) Method of false position
- 2. Finding roots of the equation f(x) = 0 using
 - i) Iterative Method
- ii) Newton Raphson's Method
- 3. To check consistency and finding Solution of a system of linear algebraic equations using
 - i) Gauss elimination Method ii) Gauss Seidal Method iii) Jacobi Method
- 4. Interpolation using
 - i) Newton's forward difference formula
- ii) Newton's backward difference formula

- 5. Interpolation using
 - i) Newton's divided difference formula
- ii) Lagrange's interpolation formula
- 6. Numerical differentiation using
 - i) Newton's forward interpolation formula ii) Newton's backward interpolation formula
- 7. Numerical Integration using
 - i) Trapezoidal rule

ii) Simpson's 1/3rd rule

- iii) Simpson's 3/8th rule
- 8. Solution of 1st order ordinary differential equations using

Rami, Por

k

\$ \$0.66

Shuks

Payinda and I

i) Taylor's series method

ii) Picard's method

iii) Euler's method

iv)Euler's modified method

- 9. Solution of 1st order ordinary differential equations using Runge-Kutta methods.
- 10. Fitting a curve using given data.

i) linear curve

ii) quadratic curve

iii) cubic curve

iv) any other

11. Finding the following, using given data:

i) mean, median and mode.

iii) standard deviation and mean deviation.

ii) moments, skewness and kurtosis of various order.

Iv) rank correlation.

ever for \$8 IN

A 2067

Shakes payindar and holy

: Solid Mechanics Lab

Subject Code

: PCCV-525

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: To understand the fundamental concepts of stress, strain, and their relationship under different loading conditions.

CO2: To analyze axial, shear, bending, and torsional loading on structural elements.

CO3: To study and apply the principles of elasticity and equilibrium in solving problems related to deformable bodies.

CO4: To determine bending stresses and shear stresses in beams and torsional stresses in shafts.

CO5: To evaluate slope and deflection in beams and understand the stability of columns under axial loads.

Pre-requisite knowledge:

		Programme Outcomes (POs)											rogrami fic Out		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3
CO2	3	3	2	1	3	2	1	2	2	2	2	2	3	3	3
CO3	1	3	3	2	3	3	3	3	3	3	3	1	3	2	3
CO4	1	3	2	1	3	1	3	3	3	3	3	3	3	2	2
CO5	3	3	3	3	3	3	3	3	3	1	3	3	2	2	2
Avg.	2.0	2.8	2.4	1.8	2.8	2.4	2.2	2.6	2.6	2.2	2.4	2.4	2.6	2.4	2.6

List of Experiments:

- 1. To find out the tensile strength of ductile materials (MS/Al) and plot its stress-strain characteristics.
- To determine impact strength of ductile and brittle materials.
- 3. Experimental verification of theory of bending (calculation of bending stress and deflections at various points in the beam theoretically and verifying the same experimentally) and indirect evaluation of the modulus of elasticity.

4. To determine the hardness of different types of materials

: Transportation Engineering-I Lab

Subject Code

: PCCV-526

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the characterization of highway materials

CO2: Know the procedure for testing of properties of aggregate

CO3: Know the procedure for testing of bituminous materials

CO4: Know the standard specifications of IS/IRC/MoRTH for judging suitability of these materials

CO5: Understand the knowledge for testing material in field

Pre-requisite knowledge:

	C	O/PO !	Mappir	ng: (Str	rong(3)	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
Cos		Programme Outcomes (POs)										rogrami fic Out			
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3
CO2	3	3	2	_ 1_	3	2	1	2	2	2	2	2	3	3	3
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO4	1	3	3	2	3	3	3	3	3	3	3	1	3	2	3
CO5	1	3	2	1	3	1	3	3	3	3	3	3	3	2	2
Avg.	1.8	2.6	2.2	1.6	2.8	2.0	1.8	2.4	2.6	2.2	2.0	2.4	2.8	2.4	2.6

List of Experiments:

- 1. Flakiness and Elongation Index of aggregates
- 2. Aggregate Impact Test
- 3. Los-Angeles Abrasion Test on Aggregate
- 4. Crushing Strength Test on Aggregate
- 5. Specific gravity and water absorption test on coarse aggregate
- 6. Penetration Test on Bitumen
- 7. Ductility Test on Bitumen
- 8. Viscosity Test on Bituminous Material
- 9. Softening Point Test on Bitumen
- 10. Flash and Fire Point Test on Bitumen

Robert Poly 28

N \$ 2009

Shully payinder and I &

: Structural Analysis

Subject Code

: PCCV-611

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After completion of the course students will be able to:

CO1: Analyze continuous beams and frames using various methods

CO2: Understand and apply concepts of unsymmetrical bending

CO3: Interpret and construct influence line diagrams for beams

CO4: Analyze structural responses in rolling load conditions

CO5: Analyze three-hinge, two-hinge and fixed arches

Pre-requisite knowledge:

		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of c Programme Outcomes (POs)										Programme Specific Outcomes			
Cos	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	3	2	3	1	2	2	2	il a	3	2	3	3
CO2	3	3	3	3	3	2	1	2	2	2	2	2	3	3	3
CO3	3	3	3	3	3	1	1	2	3	1	1	3	3	2	2
CO4	3	3	3	3	3	2	1	1	3	2	2	3	3	2	3
CO5	3	3	3	3	2	3	1	2	2	2	1	3	2	3	3
Ava	3	3	2.8	3	2.6	2.2	1	1.8	2.4	1.8	1.4	2.8	2.6	2.6	2.8

T					
ш	h	-	n	*	w

The Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Displacements	Energy Methods: Strain energy in members, Betti's and Maxwell's Laws of reciprocal deflections, Castigliano's theorems, Unit load method for 2D-frames.	8
	Indeterminate structures:	Introduction, Static and kinematic indeterminacies, Stability of structures, internal forces in two and three-dimensional structures.	
Unit-2	Analysis of Indeterminate Beams and Frames	consistent deformation, Introduction to development of flexibility matrix; Conventional methods: Slope deflection method, Moment Distribution method, Introduction to development of stiffness matrix.	
	Moving Loads and Influence Line Diagrams for Statically Determinate Structures	Bending moment and shear force diagrams due to single and multiple concentrated rolling loads and uniformly distributed moving loads, equivalent UDL, shear force and bending moment envelopes.	

Total=48

Recommended Books:

- Indeterminate structures, R.L. Jindal S. Chand & Co., N. Delhi. Advanced Structural Analysis-A.K. Jain, Nem Chand & Bros., Roorkee.
- 2. Structural Analysis-A Unified Approach, D.S. Prakash Rao, University Press, Hyderabad.
- Structural Analysis-A unified classical & Matrix Approach, A. Ghali & A.M. Neville, Chapman & Hall London.
- 4. Theory of Structures, Vol. I & II, S.P. Gupta & G.S. Pandit, Tata McGraw Hill, N. Delhi.

same for JE

for a

A 71

Study

Rajindan and hall

: Soil Mechanics

Subject Code

: PCCV-612

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Quantify the specifications of various road construction materials required

CO2: Perform geometric design of highways and expressways

CO3: Perform analysis and design of flexible and rigid pavements

CO4: Address highway maintenance, drainage and economic issues

CO5: Perform the traffic studies necessary before making changes to or designing new road Infrastructure

Pre-requisite knowledge:

	C	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of configuration of the co												Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3	
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3	
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2	
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3	
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3	
Avg.	2.2	2.4	2.2	2	2.8	2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8	

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Soil formation, various soil types	4
	Phase relationships	Index properties, sieve & hydrometer analysis, Atterberg's limits, sensitivity, thixotropy, and plasticity charts. Determination of engineering properties of soil. Indian standard and Unified classification systems of soils	4
	Clay Mineralogy	Introduction to Clay minerals their characteristics. Soil structure	4
	Seepage and Permeability	Darcy's law, validity of Darcy's Law, seepage velocity, factors affecting permeability, Laboratory and field determination of permeability. Flow net and its properties, Laplace equation, methods of drawing flownet, seepage through earth dams, exit gradient and seepage pressures, phenomenon of piping and heaving, filters. Anisotropy, Permeability of layered soils	4

pour Py

JE W

De 72

Aluby Pojinder an ful/

1

Unit-2	Stresses in Soils	Stresses beneath various loaded areas, Boussinesq and Westergard's formulae, pressure bulbs, Newmark's chart, Approximate methods	6
	Consolidation	Terzaghi's theory, time rate of consolidation, consolidation test, Compressibility & Coefficient of Consolidation, NC, OC soils, determination of pre- consolidation pressure, settlement analysis, secondary consolidation	8
	Shear Strength	Definition, Mohr's stress circle, Mohr-Columb strength theory, direct, triaxial, unconfined and vane shear	6
	Effective Stress Principle	Capillarity, types of head, seepage forces, quick sand condition, and critical hydraulic gradient	6
	Compaction	Compaction tests as per IS code, OMC, factors affecting compaction, control of compaction, field compaction equipment and their suitability tests. Drainage conditions, Concept of pore pressure coefficients, shear characteristics of normally consolidated, over consolidated clays and dense and loose sands, Dilatancy, residual strength	6

Recommended Books:

- Khanna S.K. and C.E.G. Justo, Highway Engineering, Nem Chand Bros (2017).
- 2. Kadyali L. R.; Highway Engineering, Nem Chand & Brothers, Roorkee (2018).
- Sharma &Sharma; Principle and Practice of Highway Engineering, Asia Publishing House, New Delhi (2010).
- G.V. Rao, Tata McGraw Hill, New Delhi "Principles of Transportation and Highway Engineering" (1996)
- 5. Yoder E. J.; Principles of Pavement Design, John Wiley & Sons (2011)

Robert Joy JE

gar

A 73

Stube Pajind

Reginder and Mil

: Building Material and Construction

Subject Code

: OECV-611 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Identify different building components.

CO2: Understand concept of sustainable buildings and materials

CO3: Characterize different materials used in construction along with their applications

CO4: Develop knowledge about physical and chemical properties along with advantages and disadvantages of materials used in construction.

CO5: Understand basic knowledge about installation of doors and window

Pre-requisite knowledge

Zw213		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co Programme Outcomes (POs)													Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3		
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	2		
CO2	2	3	2	2	3	2	1	2	3	2	2	2	3	3	2		
CO3	2	2	2	1	3	1	1	2	3	1	1	3	3	3	2		
CO4	3	2	2	2	3	1	1	1	3	2	2	3	3	2	3		
CO5	2	3	2	2	3	2	1	2	3	2	2	2	3	3	2		
Avg.	2.2	2.4	2	1.8	2.8	1.8	1	1.8	2.8	1.8	1.6	2.6	2.8	2.8	2.2		

T	he	n	27

Unit	Main Topics	Course outlines	Lecture(s			
Unit-1	Cement	Cements composition, types of cement, manufacturing of ordinary Portland cement, testing of cement, special types of cement, storage of cement.	4			
	Stones	Classification, requirements of good structural stone, quarrying, blasting and sorting out of stones, seasoning of stone, deterioration of stones, common building stones of India.				
	Brick and Tiles	Classification of bricks, constituents of good brick earth, harmful ingredients, manufacturing of bricks, testing of bricks. Tiles, Terra-cotta, manufacturing of tiles and terra-cotta, types of terra-cotta, uses of terra-cotta, AAC blocks, hollow concrete blocks.				
	Mortars	Definition, proportions of lime and cement mortars, Classifications & Properties.	4			

Robert Billy

JE W

A 74

Shuber

Rajinda a Mil

	Concrete	Introduction, properties of concrete, water cement ratio, workability, compressive strength, grades, Production of Concrete: Batching, mixing, transportation, placing, compaction and curing of concrete, quality control of concrete, concrete mix design.	7
	Special Concrete	Light weight concrete, high strength concrete, mass concrete, waste material-based concrete, shotcrete, fiber reinforced concrete.	4
Unit-2	Admixtures and Super- plasticizers	Functions, classification, accelerating admixture, water reducing admixture, retarding admixture, air-containing admixture	4
	Timber	Classification of timber, structure of timber, seasoning of timber, defects in timber, characteristics of good timber	4
	Metals	Manufacture of steel, market forms of steel e.g., mild steel and HYSD steel bars, rolled steel sections. Thermo-Mechanically Treated (TMT) Bars.	4
	Introduction to building construction	Basic building components (Foundation, plinth, wall, sill, lintel, roof, doors, windows, ventilators, staircases, sunshades etc.), Role of materials in construction, green building materials, fire resistance materials.	4
	Miscellaneous Materials	Asphalt, Bitumen, insulating materials, materials for doors and windows, paints, Introduction to refractories, laminate, adhesives, graphene and carbon composites.	4

Recommended Books:

- 1. Rangawala S.C. Engineering Materials Chortor Publishing House, Anand (1992).
- 2. Gambhir M. L., Concrete Technology, Tata McGraw Hill Publishing Co. Ltd., New Delhi (2004).
- 3. Rangawala S. C., Engineering Materials, Charotar
- 4. S.K. Duggal Building Materials, New Age International Publications 2006.
- Bruntley L.R Building Materials Technology Structural Performance & Environmental Impact McGraw Hill Inc 1995.
- 6. R Chudley Construction Technology, Vol I IV Longman Group Construction Ltd. 1973

Robert Port of two

A 75

Bluby pajindar and hely V

: Disaster Preparedness & Planning

Subject Code

: OECV-611 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Identify various types of disasters, their causes, effects & mitigation measures.

CO2: Demonstrate the understanding of various phases of disaster management cycle and create vulnerability and risk maps.

CO3: Understand the use of emergency management system to tackle the problems.

CO4: Discuss the role of media, various agencies and organisations for effective disaster management.

CO5:Design early warning system and understand the utilization of advanced technologies in disaster management.

Pre-requisite knowledge:

COs		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of c Programme Outcomes (POs)													Programme Specific Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	. 5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3		
CO2	2	3	2	1	3	2	1	2	2	2	2	2	3	3	3		
CO3	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2		
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3		
CO5	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3		
Avg.	2.2	2.4	2.2	2	2.8	2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8		

-				
T	h	e	0	13

Unit	Main Topic	Course outline	Lecture(s)
Unit-1	Introduction to Disaster Management	Define and describe disaster, hazard, vulnerability, risk- severity, frequency and details, capacity, impact, prevention, mitigation.	6
	Disasters	Identify and describe the types of natural and manmade disasters, hazard and vulnerability profile of India, mountain and coastal areas, Factors affecting vulnerability such as impact of development projects and environment modifications (including dams, land-use changes, urbanization etc.), Disaster impacts (environmental, physical, social, ecological, economic etc.); health, psychosocial issues; demographic aspects (gender, age, special needs), Lessons and experiences from important disasters with specific reference to civil engineering.	
ř.			

Robert

W

\$ 20 76

Stubes

Reginder de

	Disaster Mitigation and Preparedness	Disaster Management Cycle-its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; Preparedness for natural disasters in urban areas.	6
	Risk Assessment	Assessment of capacity, vulnerability and risk, vulnerability and risk mapping, stages in disaster recovery and associated problems; Use of Remote Sensing Systems (RSS) and GIS in disaster Management, early warning systems.	6
Unit-2	Post disaster response	Emergency medical and public health services; Environmental post disaster response (water, sanitation, food safety, waste management, disease control, security, communications); reconstruction and rehabilitation; Roles and responsibilities of government, community, local institutions, role of agencies like NDMA, SDMA and other International agencies, organizational structure, role of insurance sector, DM act and NDMA guidelines.	10
	Integration of public policy	Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management.	8

Recommended Books:

- 1. Natural Hazards in the Urban Habitat by Iyengar, C.B.R.I., Tata McGraw Hill, Publisher
- 2. Natural Disaster management, Jon Ingleton (Ed), Published by Tudor Rose, Leicester 92
- 3. Singh B.K., 2008, Handbook of disaster management: Techniques & Guidelines, Rajat Publications.
- 4. Disaster Management, R.B. Singh (Ed), Rawat Publications
- 5. ESCAP: Asian and the Pacific Report on Natural Hazards and Natural Disaster Reduction

Rahad

Joy 28

\$ 277 Re 77

Shuks

Rajinda de ful

: Sustainable Construction Methods

Subject Code

: OECV-612 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand fundamentals of sustainability in construction

CO2: Identify and evaluate sustainable construction materials and technologies

CO3: Apply sustainable building construction techniques

CO4: Explore sustainable bridge construction methods

CO5: Evaluate and implement emerging construction technologies

Pre-requisite knowledge:

_					201		Outcon				strengt		Programme Specific Outcomes		
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	. 3	1	1	2	3	1	. 1	3	3	2	2
CO2	3	2	2	2	2	2	1	1	3	2	2	2	3	2	2
CO3	3	2	3	3	3	2	2	2	2	2	2	3	3	3	3
CO4	3	2	2	2	3	1	1	2	2	1	1	2	3	2	2
CO5	3	2	2	2	3	2	2	1	2	2	2	2	3	2	2
Avg.	3	2	2.2	2.2	2.8	1.6	1.4	1.6	2.4	1.6	1.6	2.4	3	2.2	2.2

1000	_		
-		-	-
	п	ല	1

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Definitions-Various types- Pillars of Sustainability – Circle of Sustainability - Need-systems and their sustainability - Green Buildings -Difference between Green and Sustainability – Climate Change, Global warming -National and International policies and Regulations. Identification of cutting-edge sustainable construction materials, technologies, and project management strategies for use in the construction industry and evaluation of their potential to reduce the negative environmental impacts of construction activity.	10
	Building Construction Methods	Conventional modular construction methods, development, Engineering principles, benefits, Modular construction methods for repetitive works, Green Roofs, Cool Roofs, Passive House, Rammed Earth Brick, Passive Solar, Grey water Plumbing Systems, Solar Thermal Cladding, Solar Power, Water Efficiency Technologies, Sustainable Indoor Environment Technologies.	8

Pahal.

My 28 m

A 78

Study

Pajirda De 1

	Precast Construction Methods	Modular construction methods for repetitive works; Precast concrete construction methods; Benefits, Sustainability in Concrete Mix Design, Greener, Faster and Sustainable Construction Practices Through Precast Solutions, Use of secondary cementitious material (SCM's) like GGBS, fly ash, ultra-fine GGBS in the production of the concrete, Basics of Slip forming for tall structures, Structural 3D Printing, Self-healing Concrete, Green Insulation, Sustainable Resource Sourcing, Environmental Sustainability Benefits From Precast Concrete.	10
Unit-2	Construction Methods Of Bridges	Types of foundations and construction methods; Basics of Formwork and Staging; Proactive Maintenance, Prefabrication/Modular Construction, balance between environment and construction activities, reducing problem sat site with minimal staging, increasing safety etc, Constructions are sustainable with reduced use of natural resources, Costs of Construction/Assembly and Transportation, Lifespan, Environmental Impact, harmful emissions during bridge construction, Reducing waste, solar panels to power LED lights to illuminate its deck, water-powered light system powered by the currents of the river, development that meets the needs of the present.	12
	New Construction Materials Technologies	Introduction to new construction materials & technologies, Synthetic Roof Underlayment, Electro chromic Glass, Biodegradable Materials, Reduction of water consumption, Impact on environment, Concepts of climate responsive building, Sustainability assessment using standard approaches-LEED/GRIHA rating evaluation process	8

Recommended Books:

- 1. Margaret Robertson, Sustainability Principles and Practice, Routledge, 2014; Routledge; 3rd edition (10 February 2021)
- 2. Martin A. A. Abraham, Sustainability Science and Engineering: Defining Principles, Elsevier Science, 2005
- 3. Tony Clayton, Nicholas J. Radcliffe, Anthony M. H. Clayton, Sustainability: A Systems Approach, Routledge, 1996
- 4. Stephen M. Stephen, Stephen M. Wheeler, Climate Change and Social Ecology: A New Perspective on the Climate Challenge, Routledge, 2012
- 5. Gursharan Singh Kainth, Climate Change, Sustainable Development and India, LAP Lambert Academic Publishing, 2011

: Road Safety : OECV- 612 B

Subject Code

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Identify factors contributing to road accidents

CO2: Apply road safety measures and data analysis techniques

CO3: Conduct road safety audits

CO4: Develop strategies for traffic safety during road operations

CO5: Design and implement traffic safety features

Pre-requisite knowledge:

				Programme Specific Outcomes													
COs	PO PO PO	O PO PO PO	PO	PO	PO P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	3	2	3	3	2	1	2	3	2	1	3	3	2	2		
CO2	3	2	2	2	3	2	1	i	3	2	2	3	3	2	3		
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	2		
CO4	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2		
CO5	3	3	3	3	2	3	2	2	3	2	3	3	3	2	2		
Avo	2.6	2.6	2.4	2.6	2.8	2	1.4	1.8	3	1.8	1.8	3	3	2.2	2.2		

-			
Т	h	00	171

Unit	Main Topic	Course out line	Lecture(s)
Unit-1	Road Accidents	Causes of road accidents: Vehicle design factors &Driver characteristic s influencing road safety, Road condition, Parking and its influence on traffic safety.	12
	Road safety measures:	Accident data collection methods; Representation of accident data: Collision and condition diagram; Methods to Identify and Prioritize Blackspots; Road safety measures.	12
The state of the s	Road safety audits	Key elements in Road safety audit; Road safety audit procedure and investigations; Role of ITS in Road safety	10
	Ensuring Traffic Safety in Road Operation: -	Ensuring Traffic Safety during Repair and Maintenance, Prevention of Slipperiness and Influence of Pavement Smoothness, Restriction speeds on Roads, Safety of Pedestrians, Cycle Paths, Informing Drivers on Road Conditions with Aid of Signs, Traffic Control Lines & Guide Posts, Guardrails & Barriers and Road Lighting.	14

Reduct, Righ

28

h

A 80

Blubs

Rayinda and

Recommended Books

- 1. BABKOV, V.F. 'Road conditions and Traffic Safety', MIR, publications, Mascow 1975.
- K.W. Ogden, 'Safer Roads A Guide to Road Safety Engg.' Averbury Technical, Ashgate Publishing Ltd., Aldershot, England, 1996.
- Kadiyali, L.R., 'Traffic Engineering and Transport Planning', Khanna Publications, New Delhi, 2009.
- C. JotinKishty & B. Kent Lall, "Transportation Engineering-An Introduction", Third Edition, Prentice Hall of India Private Limited, New Delhi, 200

Rome Jay 28

A 81

Study Pajinda and

: Advanced Surveying

Subject Code

: PECV-611 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: To understand the working principles, types, and applications of GPS and DGPS, along with sources of GPS errors in real-time and post-processing.

CO2: To gain knowledge about the fundamentals of remote sensing, electromagnetic spectrum, types of sensors, satellite orbits, and image interpretation techniques.

CO3: To learn the basic concepts and components of Geographic Information Systems (GIS), including data models, topology, projections, and Digital Elevation Models (DEMs).

CO4: To study the principles and applications of aerial surveying and photogrammetry, including stereoscopy and LIDAR technology for mapping and analysis.

CO5: To understand the use of drone technology in surveying, its accuracy, error control techniques, and its comparative advantages in modern geospatial applications.

Pre-requisite knowledge:

Cos			3		Progra						strengtl		Programme Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	2	3	2	2	3	2	3	3	3	2	3
CO2	3	3	3	3	3	2	2	2	3	2	3	3	3	1	2
CO3	3	3	3	3	3	1	1	2	2	2	3	3	3	1	2
CO4	3	3	3	3	3	2	2	2	3	2	3	3	3	1	2
CO5	3	3	3	3	2	2	2	2	2	2	3	3	3	1	2
Avg.	3	3	3	3	2.6	2	1.8	2	2.6	2	3	3	3	1.2	2.2

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Global Positioning Systems (GPS):	Working Principle, Types of GPS, Application of GPS, DGPS-working Principle, DGPS errors (RT & PP).	10
	Fundamentals of Remote Sensing:	Introduction to Remote sensing and electromagnetic spectrum, types of sensors, Orbit and path, Geometric and Radiometric errors, image interpretation-visual and digital	10
	GIS techniques	Basic concepts, Topology, Data models- Vector and Raster, attribute, Digital Elevation models, Map, Projections	10
Unit-2	Acrial Surveying and Photogrammetry	Basic concepts, principles, and applications of photogrammetry, concepts, and applications for map preparation, Stereoscopy, LIDAR	10

Robul

JE for

A 82

Study

by Rojinda De W

Drone Surveying:	Introduction to drones, comparison of surveying drone and its accuracy; techniques of controlling errors	o
	brone surveying.	3 44

Recommended Books:

- 1. Gopi, S., Sathikumar, R, and Madhu, N. Advanced Surveying, Pearson Publisher, 2023
- 2. Garg, P.K., Introduction to surveying and geomatics engineering, CBS Publishing, 2023
- 3. Arora KR, Surveying (Vol. III). Standard Book House, 2015

Rame Pay 28 fr

\$ 83 Re 83 Aluby Royindan an half

: Rock Mechanics

Subject Code

: PECV-611 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand rock mechanics and classification of rocks

CO2: Conduct laboratory tests on rock samples

CO3: Perform in-situ testing on rocks

CO4: Evaluate stress in rock formations in field conditions

CO5: Apply rock stabilization techniques and tunnel design principles

Pre-requisite knowledge:

	CC)/PO N	1appin	g: (Str	ong(3)	/ Med	ium(2)	/ Wea	k(1) in	dicates	strengtl	h of cor	relation		
COs ·					Programme Specific Outcomes										
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	3	3	3	3	3	2	1	2	2	1	1	2	3	2	2
CO ₅	3	3	2	3	2	2	2	1	- 3	2	3	3	3	2	2
Avg.	2.8	2.6	2.4	2.6	2.8	1.8	1.4	1.6	2.8	1.6	1.8	2.8	3	2.2	2.4

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Importance of rock mechanics, composition of rocks, geological and lithological classification of rocks, classification of rocks for engineering purposes, R.Q.D. method of classification of rocks. Theories of Brittle failure.	6
	Laboratory Testing of Rocks	Various methods of obtaining rock cores, methods of sample preparation, and methods of removing end friction of the rock samples. Compression testing machine, uniaxial compression strength of rock samples, methods of finding tensile strength-direct and indirect methods, Brazilian test, shear box test, triaxial shear test, punch shear test.	6
	In-situ Testing of Rocks	Field direct shear test on rock blocks, field triaxial strength, use of flat jacks, chamber test, plate load test, cable jacking test.	6

Rahul

Day 28

In .

A 84

Shall Pajiri

Rajinda an In &

	Stress Evaluation in Field	Stress-relief technique (over coring), use of strain gauges, bore hole, deformation cell, photo-clastic stress meter, stress measurement with flat jack. Hydraulics Fracturing Techniques.	6
Unit-2	Stabilization of Rocks	Rock bolting, principle of rock bolting, various types of rock bolts, application of rock bolting. Field testing of rock bolts and cable anchors.	6
	Elastic and Dynamic Properties of Rocks	Stress-strain behaviour dynamic properties, resonance method and ultra-sonic pulse method.	6
	Pressure on Roof of Tunnels	Trap door experiment, Terzaghi's theory, Bieraumer, kommerel, Protodyakanov theory.	6
	Stress Around the Tunnels	Basic design and Principles of tunnels in rocks, design of pressure tunnels in rocks.	6

Recommended Books:

- 1. Lama, et.al Rock Mechanics, Vol. I, II, III, IV
- 2. Jaeger and Cook, Fundamentals of Rock Mechanics, Blackwell Publishing
- 3. Stagg & Zienkiewiez, Rock Mechanics, Wiley-Blackwell
- 4. Obert & Duvell, Rock Mechanics & Design of Structures in Rocks, Wiley
- 5. Jaeger, Rock Mechanics & Engineering, Cambridge University Press
- Károly Széchy, Art of Tunneling; Akadémiai Kiadó; 2d English ed. (rev. and enl.) edition (1 Jan. 1973)

Rahue Pay 28 4

A 85

Bludy Pajinda an holy

: Structural Analysis Lab

Subject Code

: PCCV-613

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Apply reciprocal and moment area theorems to beam deflections

CO2: Analyze truss deflections experimentally

CO3: Evaluate elastic displacements in curved members

CO4: Study behaviors of arches and struts

CO5: Determine elastic properties and deflection patterns in beams

Pre-requisite knowledge:

COr	C	0/20 1	viappii				Outcon			dicates	Suche	11 01 00	Pi	rrelation): Programme Specific Outcomes		
COs	PO	PO	PO	PO	PO	PO	PO	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
COL	1	2	2	2	3	6	1	2	3	1	1	3	3	1	2	
CO1	3	3	3	- 2		1	1.		3	1	1	-	2			
CO ₂	3	3	2	2	3	2	1	S1-	3	2	2	2	3		3	
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	1	3	
CO4	3	3	3	3	2	2	1	1	3	2	2	3	3	1	2	
CO5	3	3	2	2	2	2	1	1	2	2	2	3	3	1	2	
Avg.	3	3	2.6	2.4	2.6	1.8	1.2	1.4	2.8	1.8	1.8	2.8	3	1	2.4	

List of Experiments:

- 1. Verification of Maxwell reciprocal theorem of deflection using a simply supported beam.
- 2. Verification of moment area theorem for slopes and deflections of the beam.
- Deflections of a truss-horizontal deflections & vertical deflections of various joints of a pinjointed truss.
- 4. Experimental and analytical study of behaviour of struts with various end conditions.
- 5. To determine elastic properties of a beam.
- 6. Experiment on a two hinged arch for horizontal thrust & influence line for Horizontal thrust
- 7. Experimental and analytical study of a 3 bar pin jointed Truss.
- Experimental and analytical study of deflections for unsymmetrical bending of a Cantilever beam.

Robert All

A 20 86

Study

mby posinder and I &

: Soil Mechanics Lab

Subject Code

: PCCV-614

L	Т	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Determine basic physical properties of soil such as water content, specific gravity, particle size distribution, and Atterberg limits.

CO2: Conduct compaction and permeability tests to evaluate soil compaction characteristics and coefficient of permeability.

CO3: Perform shear strength tests including direct shear, unconfined compression, and vane shear to determine strength parameters of soil.

CO4: Analyze consolidation behavior of soils using consolidation-testing apparatus.

CO5: Interpret test results and relate them to field conditions for practical applications in geotechnical engineering.

Pre-requisite knowledge:

	С	O/PO 1	11 01 00	P	rrelation): Programme Specific Outcomes										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	2	3	1	1	2	3	1	1	3	3	1	2
CO2	3	3	2	2	3	2	1	1	3	2	-2	2	3	1	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	1 .	3
CO4	3	3	3	3	2	. 2	1	1	3	2	2	3	3	1	2
CO5	3	3	2	2	2	2	1	1	2	2	2	3	3	1	2
Ave.	3	3	2.6	2.4	2.6	1.8	1.2	1.4	2.8	1.8	1.8	2.8	3	1	2.4

List of Experiments:

- 1. Determination of field density by Core cutter & Sand replacement method
- 2. Grain size Analysis by Mechanical method
- 3. Grain Size Analysis by Hydrometer method
- 4. Determination of Specific Gravity by Pycnometer
- 5. Determination of Liquid Limit, Plastic limit
- 6. Determination of Shrinkage limit
- 7. Determination of Permeability by constant head & variable head permeameter
- 8. Determination of Coefficient of Consolidation by Consolidation Test
- 9. Determination of OMC and MDD by IS standard Compaction test
- 10. Direct Shear Test

Raw Doy 28

N G

Be 87

Muly pajinda and

: Engineering Economics and Entrepreneurship

Subject Code

: HSMC-603

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1:Understand the identify the type of interest simple, compound, preset worth comparison equivalent, annual worth comparison with interest tables

CO2: Knowledge of obtaining annual payment monthly payment cash flow diagram depreciation.

CO3: Able to acquire skills regarding direct costs components of costs financial statement profit and loss account

CO4: Analyse the stability of profit planning balance sheet scope of finance functions.

CO5: Understand shrinking fund application concepts using formulas compound interest tables.

Pre-requisite knowledge:

	C	O/PO	Mappir	ng: (Str	rong(3) / Med	lium(2)/Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):		
COs					Progra	ımme (Outcon	nes (Po	Os)					Programme Specific Outcomes		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
CO1	1	1	2	2	1	1	1	1	1	2	2	2	1	2	2	
CO2	1	1	1	1	1	2	2	2	1	1	1	2	1	1	1	
CO3	1	1	1	1	1	1	1	2	2	1	11	3	1	2	2	
CO4	1	1	1	1	1	2	2	2	1	1	1	2	1	1	1	
CO5	1	1	1	1	1	1	1	2	2	1	1	3	1	2	2	
Avg.	1	1	1.2	1.2	4	1.4	1.4	1.8	1.4	1.2	1.2	2.4	1	1.6	1.6	

Theory

Unit	Main Topic	Course outline	Lecture(s)				
Unit-1	Introduction	Engineers and Economics, Utility of its study, Managerial Economics, Nature and scope, basic terms and concept of economics like goods, kinds of goods.	02				
	Theory of Demand and Supply	Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve, Elasticity of demand, The meaning of Supply, Supply function, Law of supply- Explanation of law of supply.	08				
11	Environment Analysis	Concept of National income- GDP, GNP, Monetary policy, Fiscal Policy.					
	Entrepreneurship -Enterprise	Conceptual issues, Entrepreneurship vs. Management, Concept of Social Entrepreneurship and Women Entrepreneurship, Roles and functions of engineer in relation to the enterprise and in relation to the economy.	05				

Robert Styr

So

for

\$

Blubs

Rojinda a

	Business Excellence	Role of creativity and innovation and business research, Sources of business idea, TQM,Six Sigma	02				
Unit-2	The process of setting up a small business	Preliminary screening and aspects of the detailed study of the feasibility of the business idea, Preparation of Project Report and Report on Experiential Learning of successful and unsuccessful entrepreneurs.	04				
	Communication skills	Introduction, process of communication, barriers to communication, Removal of barriers, channels of communication, Verbal and non-verbal communication.					
	Issues in small business marketing	The concept and application of product life cycle, Advertising and publicity, sales and distribution management, National, state level and grass-root level financial and non-financial institutions in support of small business development, MSME Act					
	Human Resource Management	Introduction, definition, types, tools of motivation, Theories of motivation- Alderfer's ERG theory, Herzberg's theory of motivation, Mc Clelland theory. Introduction, objectives, scope, functions. Factory Act 1948	06				

Recommended Books:

- Dutta A.K., Materials Management: Procedures, Text and cases, Prentice Hall of India Pvt. Ltd., New Delhi.
- 2. Gopalakrishnan, P. and Sundareson, M., Materials Management: An Integrated Approach, Prentice Hall of India Pvt. Ltd., New Delhi.
- 3. Varma, M.M., Essentials of Storekeeping and Purchasing, Sultan Chand and Sons, New Delhi.
- Shah N.M. An Integrated concept of Materials Management, Indian Institute of Materials Management, Baroda Branch, Baroda.
- 5. Sharma S.C., Material Management and Materials Handling, Khanna Publishers, New Delhi.
- Arnold, Champman and Ramakrishnan, Introduction to Materials Management 5th ed., 2007 Pearson Education, Inc.
- Pooler Victor H. Purchasing and Supply Management, Creating the Vision, New York, Chapman & Hall, 1997.
- 8. Moore, J.M., Plant layout and Design, Macmillan New York.

same May So AN

A 89

Muly Rajinda an Ind X

: Water and Waste Water Engineering

Subject Code

: PCCV-621

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand the fundamentals of water supply systems

CO2: Evaluate water quality standards and impurities

CO3: Analyze water treatment processes

CO4: Design and assess water conveyance systems

CO5: Calculate storage and requirements for distribution reservoirs

Pre-requisite knowledge:

COs				Programme Specific Outcomes											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	3	2	2	2	2	2	2	2	2	2	3	3	2	3	2
CO2	3	3	2	2	1	1	2	1	1	1	2	2	3	1	1
CO3	2	3	3	3	2	1	2	1	2	2	3	3	3	2	2
CO4	3	3	2	3	2	2	2	1	2	2	3	3	3	3	2
CO5	3	3	3	2	2	2	2	1	2	2	3	3	3	3	2
Avg.	2.8	2.8	2.4	2.4	1.8	1.6	2	1.2	1.8	1.8	2.8	2.8	. 2.8	2.4	1.8

Theory

Unit	Main Topics	Course outlines	Lecture(s)					
Unit-1	Water and water supply system	: Water quality, source of surface water pollution, water quality standards; Water demand, components of water supply system; water intake works; Water transmission systems	12					
	Water treatment:	Water treatment plants and components; Technologies for the removal of suspended, colloidal and dissolved solids and for disinfection; Design of coagulation-flocculation-settling, slow sand and rapid gravity filtration, membrane filtration, ion exchange, adsorption and chlorination units.						
Unit-2	Wastewater system	: Quantification of sewage; Characterization of sewage; Types of sewerage systems; Design of sewers and storm sewers, sewer outfalls and sewer appurtenances	12					
	Wastewater treatment:	Components; Design of screens, degritters, clarifiers and roughing filters; Activated Sludge, UASB and modified UASB reactors, and Waste stabilization pond systems, vegetated ponds and constructed wetland systems; Sewage treatment plant sludge handling facilities	12					

Total=48

Zahar Por SE

Sw A

\$ 200 mg

Bluby

Rajinda and

Recommended Books:

- 1. Water Supply and Sewerage: E.W. Steel.; McGraw-Hill, New York
- 2. Water Supply Engineering: S.R. Kshirsagar.; Roorkee Publication
- 3. Water Supply Engineering: S.K. Garg.; Khanna Publishers
- 4. Water Supply Engineering: B.C. Punmia., Laxmi Publications
- Environmental Engineering: Peavy H. S., Rowe D. R. and Tchobanoglous G.; McGraw-Hill, New York
- 6. Introduction to Environmental Engineering: Davis M. L. and Cornwell D. A.
- 7. Water Supply and Sanitary Engineering: Birdie, G. S. and Birdie; Dhanpat Rai Publishing Company
- 8. Manual on Water Supply and Treatment: Ministry of Urban Dev., New Delhi.

sawe for 28

W Degi

Muly pajindar an Ind

: Design of Steel Structures

Subject Code

: PCCV-622

Γ	L	T	P	Credits	Weekly Load
	3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand the types of loads, structural steel materials and specifications, and apply IS:800 and IS:2062 standards in the design of structural elements considering strength, stiffness, and serviceability.

CO2: Analyze and design bolted and welded connections, including concentric and eccentric joints, and evaluate their efficiency and failure modes.

CO3: Design various types of tension members including angles, tees, tension splices, and lug angles, using appropriate net effective area concepts.

CO4: Analyze and design axially loaded compression members such as single and built-up columns, and understand concepts like slenderness ratio, effective length, and allowable stress.

CO5: Apply the fundamentals of plastic design including plastic hinges, collapse mechanisms, and determine collapse loads using static and mechanism methods.

Pre-requisite knowledge:

	C	0/FO 1	иарри			mme (Programme Specific Outcomes		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	2	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	3	3	3	2	3	1	1	2	2	1	1	2	3	2	2
CO5	3	3	2	2	3	2	1	1	3	2	2	3	3	2	3
Avg.	3	2.8	2.4	2.2	3	1.6	1.2	1.6	2.8	1.6	1.6	2.6	3	2.2	2.6

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Loads, structural steels and their specifications, structural elements, design specifications as per IS: 800, structural layout, strength and stiffness considerations, efficiency of cross-section, safety and serviceability considerations as per IS2062-2011	12
	Bolted and Welded Connection	Types of Bolts, advantages and disadvantages of bolted connections, failure of bolted joints, design of the concentric bolted joint, the efficiency of joint. Design of Eccentric bolted connections. Welded Connection: Types of welded joints, design of welded joint subjected to axial loads	12
	Tension Members	10	

Unit-2	Compression Members	Axially loaded columns, effective length, slenderness ratio, allowable stresses, general specifications, design of axially loaded members, laced and battened columns and their design, built-up compression members	10
	Plastic Design	Introduction, advantages and disadvantages, theory of plastic bending, plastic hinge mechanism, collapse load analysis, static and mechanism method, distributed loading, design consideration.	10
	Flexural Members (Beams)	Design criteria, permissible stresses, laterally supported beams and their design laterally unsupported beams and their design, web buckling, web crippling	10

Recommended Books:

- 1. Subramanya, N, Design of Steel Structures, N. Subramanian, Oxford University Press (2016).
- 2. Duggal, S.K. Limit State Design of Steel Structures, McGraw Hill (2010.)
- 3. Bhavikatti S.S, Design of Steel Structures, Ik International Publishing House, New Delhi, 2017
- 4. Sai Ram, K.S, Design of Steel Structures, Pearson Education in South Asia, 2010.
- 5. Chandra R. and Gehlot V, Limit State Design of Steel Structures, Scientific Publishers, 2009

early SE

₩.

A 2093

Shull pajinda an hill

: Solid and Hazardous Waste Managements

Subject Code

: OECV-621 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1:Understand integrated solid waste management principles

CO2: Analyze collection, storage and transportation systems for waste management

CO3:Evaluate solid waste processing and treatment technologies

CO4: Apply treatment and disposal methods for hazardous wastes

CO5:Understand and comply with legal requirements for waste management

Pre-requisite knowledge:

	C	O/PO 1	Mappir	ng: (Str	rong(3)	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
Cos				1	Progra	mme (Outcom	nes (PC	Os)				Programme Specific Outcomes		
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COI	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	3	3	2	2	_1_	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	2	3	2	2	3	2	1	2	2	1	1.	2	2	2	2
CO5	2	2	2	3	3	2	1	1	3	2	2	3	3	2	2
Avg.	2.4	2.6	2.4	2.6	2.8	1.8	1.2	1.6	2.8	1.6	1.6	2.6	2.8	2.2	2.4

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Definition of solid wastes and hazardous wastes, Nuisance potential and extent of solid waste problems, Objectives and scope of integrated solid waste management.	8
	Collection, Storage and Transportation of Wastes	Types of collection systems and their components, Concept of waste segregation at source and recycling and reuse of wastes.	8
	Solid Waste Processing and Treatment	Waste processing – processing technologies – biological and chemical conversion technologies–Composting-thermal conversion technologies-energy recovery.	8
Unit-2	Hazardous Waste Treatment and Disposal	Biological and chemical treatment of hazardous wastes; Solidification and stabilization of wastes; Incineration for the treatment and disposal of hazardous wastes; Land farming; Landfill disposal of hazardous waste; Bioremediation of hazardous waste disposal sites.	8

Sanitary Landfills	Design, development, operation and closure of landfills, Management of leachate and landfill gases, environmental monitoring of landfill sites.	8
Legal Requirements	Municipal solid waste rules; Hazardous waste rules; Biomedical waste rules; E-waste rules; Rules related to recycled plastics, used batteries, fly ash, etc.	8

Recommended Books:

- 1. Pichtel, J., Waste Management Practices-Municipal, Hazardous and Industrial, CRC Press
- 2. Vesilind, P.A., Solid Waste Engineering, Thomson Learning Inc.
- 3. Tchobanoglous, G., Vigil, S.A. and Theisen, H., Integrated Solid Waste Management: Engineering Principles and Management Issues, McGraw Hill
- 4. HowardS. Peavy, Donald R. Rowe & George Tchobanoglous, "Environmental Eng.", McGraw Hill
- CPHEEO, Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India

Rahul. John JB

\$ 95 Pe 95

Shule Projinder and

: Construction Equipment & Automation

Subject Code

: OECV-621 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand Equipment's & Automation and key features of its performance

CO2: Develop skills in equipment planning and selection

CO3: Comprehend earthwork and concrete equipment operations

CO4: Apply knowledge of specialized construction equipment's

CO5: Explore automation and robotics in construction

Pre-requisite knowledge:

20						mme (strengt		Pi	ogrami fic Out	
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	3	1	2	2	3	1	1	3	3	2	2
CO2	2	2	2	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	2	3	2	2	2	3	2	2	3	3	3	3
CO4	2	2	3	3	3	1	1	2	2	1	1	2	3	2	2
CO5	3	2	2	2	3	2	1	2	3	2	1	3	3	3	3
Avg.	2.4	2.2	2.4	2.2	3	1.6	1.4	1.8	2.8	1.6	1.4	2.6	3	2.4	2.6

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Construction Equipment	Introduction, significance of equipment in construction industry-laboratory setting including plan reading, specification reading, construction scheduling and estimating, Job layout and its importance. Study of equipment with reference to available types and their types and their capacities, factors affecting their performance.	8
	Construction Equipment Management	Equipment Management-Introduction, Differences between men and manpower, Extent of Mechanization, Equipment planning, Selection of equipment, Forward planning, Purchase of Equipment, Specifications for ordering equipment.	8
	Equipment for Earthwork	Fundamentals of Earth Work Operations - Earth Moving Operations - Types-Excavation equipment-Power Shovels, Back Hoe, Drag line, Clamshell - Scrapers, Bull Dozers, Tractors, Hauling Equipment - Dump trucks, Dumpers Loaders, trucks, Earth Compaction Equipment-Tamping Rollers, Smooth Wheel	8

Restrict Park

SE M

A 2006

Studes

Rojindan and

		Rollers, Sheep foot Roller, Pneumatic-tired Roller, Vibrating Compactors, Vibro compaction methods.	
Unit-2	Other Construction Equipment	Pile driving Equipment - Erection Equipment - Cranes, Derrick Cranes, Mobile cranes, Overhead cranes, Traveler cranes, Tower cranes - Types of pumps used in Construction - Grouting - Material Handling Conveyors -Industrial Trucks, Forklifts and related equipment.	6
	Equipment for Concrete and Road laying	Aggregate production equipment- Different Crushers – Feeders - Screening Equipment -Handling Equipment - Batching and Aggregate Mixing Equipment - Asphalt Plant, Asphalt Pavers, Asphalt compacting Equipment – Ready mix concrete equipment, Concrete mixers, Concrete batching and mixing plant, Transportation of concrete mix, Concrete pouring and pumps, concrete compaction equipment	6
	Automation	Introduction & Technical terms of Automation and robotics; advantages & disadvantages, Need for construction automation, Applications, Automation in precast construction industry, Autonomous Machines on the Construction Site, Drones to Survey Working Areas, Robotics in Concrete Works, IoT Sensors to Collect and Process Data, Virtual Reality During Project Planning and Training, Automatic Concrete Screeding Machine, Concrete Surface Finishing Robot, Automation in High Rise Building Construction, Automation in prefabrication of masonry and on site masonry construction, partially automated masonry element prefabrication, automated manufacture of brick wall masonry blocks, Automation in timber construction, Automation in production of steel components, Transformable welding robot.	12

Recommended Books:

- Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", McGraw Hill, Singapore, 2006.
- 2. Sharma S.C. "Construction Equipment and Management", Khanna Publishers, New Delhi, 1988
- Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 1988.
- Dr. Mahesh Varma, "Construction Equipment and its planning and Application", Metropolitan Book Company, New Delhi. 1983.

Rame John SE

A 97

Studes

Rojinda and My

: Repairs & Rehabilitation of structure

Subject Code

: OECV-622 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the need for structural rehabilitation

CO2: Analyze causes and defects of deterioration in concrete structures

CO3: Evaluate strength and durability factors in concrete CO4: Implement surface repair and retrofitting methods

CO5: Apply strengthening and seismic rehabilitation techniques

Pre-requisite knowledge:

0	C	O/FO I	чарри		Progra					idicates	strengt	11 01 00	Pr	ogrami fic Out	
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	- 1		3
CO1	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	3	3	3	2	1	1	3	2	2	2	3	2	2
CO3	3	3	3	2	2	2	2	2	2	2	2	3	3	2	3
CO4	3	3	2	3	3	1	1	2	2	1	1	2	3	2	2
CO5	3	3	3	3	3	3	2	1	3	2	3	3	3	2	2
Avg.	3	2.8	2.6	2.6	2.8	1.8	1.4	1.6	2.6	1.6	1.8	2.6	3	2	2.2

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction to Rehabilitation of Structures	Aging of Structures, Performance of Structures, need for rehabilitation of structural members, Maintenance, Facets of Maintenance, Importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, Causes of deterioration.	7
	Evaluation and Deterioration of Concrete Buildings	Visual Integration, Destructive Testing Systems, Non Destructive Testing Techniques, Semi Destructive Testing Techniques, Chemical Testing, Embedded Metal Corrosion, Disintegration Mechanisms, Moisture Effects, Thermal effects, Structural effects, Faulty construction, Distress in structure due to corrosion, fire, leakage, earthquake and effects, case studies, damage assessment and evaluation models.	9
	Strength and Durability of Concrete	Quality assurance for concrete – Strength, Durability and Thermal properties of concrete – Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion – Effects of cover thickness and	12

		cracking, Methods of corrosion protection, Corrosion inhibitors, corrosion resistant steels, coatings, and cathodic protection, Special concretes Polymer concrete, Sulphur infiltrated concrete, Fiber reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self-compacting concrete, Geo-polymer concrete, Reactive powder concrete, Concrete made with industrial wastes.	
Unit-2	Surface Repair and Retrofitting	Strategy and Design, Selection of Repair Materials, Surface Preparation, Bonding Repair Materials to existing concrete, Placement methods, Epoxy bonded replacement concrete, Preplaced aggregate concrete, Shotcrete/Gunite, Grouting, Injection Grouting, Micro concrete, Mortar repair for cracks, shoring and underpinning.	10
	Strengthening Techniques and Seismic Rehabilitation	Beam Shear Capacity Strengthening, Shear Transfer Strengthening between members, Column Strengthening, Flexural Strengthening and Crack Stabilization, Seismic strengthening of structures, Guidelines for Seismic Rehabilitation, Seismic Vulnerability and Strategies for Seismic Retrofit.	10

Recommended Books:

- R.T. Allen and SC Edwards, "Repair of Concrete Structures", Blakie and Sons, 1987
- 2. FEMA273, NEHRP Guidelines for Seismic Rehabilitation of Buildings, 1997
- Dov Kominetzky. M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 4. Emmons, P.H., "Concrete Repair and Maintenance", Galgotia Publication, 2001
- Ravishankar. K, Krishnamoorthy. T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- Malhotra, V.M. and Carino, N.J., "Handbook on Non Destructive Testing of Concrete", CRC press, 2004
- 7. Bohni, H., "Corrosion in Concrete Structures", CRC Press., 2005
- 8. Shetty M.S., "Concrete Technology Theory and Practice", S. Chand and Company, 2008.
- CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- P.C. Varghese, "Maintenance Repair and Rehabilitation and Minor Works of Bridges", PHI learning Pvt. Ltd, 2014.

some loy 28

A 2099

Share Pajindan and Il

: Ground Improvement Technique

Subject Code

: OECV - 622 B

L	CITY CALLS	WEERIY LO	Credits	P	T	1
3 0 0 3		3	3		0	

Course Outcomes:

After successful completion of course, the students should be able to

CO1:Learn about geo-synthetics and their properties

CO2:Design the foundations on stabilized soils

CO3:Compare the results with non-stabilized soils

CO4: Study the Soil improvement using reinforcing elements

CO5:Learn about Geotextiles

	C	O/PO I	Марріг	ig: (Sti	Progra	mme (Outcon	nes (PC	Os)					ogramr fic Out	
Cos	PO	PO	PO	PO	PO	PO	PO	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
	1	2	- 3	4	3	6	1	2	3	1	1	3	3	2	2
CO1	3	2	2	2	3	1	1	1	2	2	2	2	3	2	3
CO2	3	3	2	2	3	2	2	2	3	2	2	3	3	3	3
CO3	3	3	3	3	2_	2	2	4	1000	2	2	2	3	2	2
CO4	2	3	2	2	3	1	1	2	2		2	3	3	2	3
CO5	3	3	2	2	3	2	1	1	3	2		2.6	3.0	2.2	2.6
Avg.	2.8	2.8	2.2	2.2	2.8	1.6	1.4	1.6	2.6	1.8	1.8	2.0	5.0	2.2	210

Theor	y:	Course Outline	Lecture(s)
Unit	Main Topics	Course Outline	8
Unit-1	Introduction	Role of ground improvement in foundation engineering—Geotechnical problems in alluvial, lateritic and black cotton soils, Methods of ground improvement Selection of suitable ground improvement techniques based on soil conditions.	
	In situ densification of cohesion	Less soils and consolidation of cohesive soils: Dynamic compaction Vibro flotation, Sand compaction piles and deep compaction. Consolidation: Preloading with sand drains, and fabric drains, Stone columns and Lime piles- installation techniques – simple design – relative merits of above methods and their limitations	10

Unit-2	Soil improvement with the addition of materials	The state of the s	12
	Soil improvement using reinforcing elements	Introduction to reinforced earth - load transfer mechanism and strength development - soil types and reinforced earth - anchored earth nailing reticulated micro piles - soil dowels - soil anchors -reinforced earth retaining walls.	10
	Geotextiles	Behaviour of soils on reinforcing with geo textiles - effect on strength, bearing capacity, compaction and permeability - design aspects - slopes - clay embankments - retaining walls - pavements	8

Recommended Books:

- Moseley, Text Book on Ground Improvement, Blackie Academic Professional, Chapman & Hall
- 2. Boweven R., Text Book on Grouting in Engineering Practice, Applied Science Publishers Ltd
- Jewell R.A., Text Book on Soil Reinforcement with Geotextiles, CIRIA Special Publication, Thomas Telford
- Van Impe W.E., Text Book On Soil Improvement Technique & Their Evolution, Balkema Publishers
- Donald. H. Gray& Robbin B. Sotir, Text Book On Bio Technical & Soil Engineering Slope Stabilization, John Wiley
- 6. Rao G.V. & Rao G.V.S., Text Book On Engineering with Geotextiles, Tata McGraw Hill
- 7. Korener, Construction & Geotechnical Methods in Foundation Engineering, McGraw Hill
- 8. Shukla, S.K. and Yin, J.H. Fundamental of Geosynthetic Engineering, Taylor & Francis
- 9. Swamisaran, Reinforced Soil and its Engineering Application, New Age Publication

same My 28 M

A 101

Studes pajindar and of

: Transportation Engineering-II

Subject Code

: PECV-621 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Determine the runway orientation and the runway length as per FAA &ICAO guidelines.

CO2: Design the airport pavements including air-side marking & lighting as per ICAO & FAA guidelines

CO3: Evaluate pavement and learn the concept of pavement maintenance management system.

CO4: Employ Railway Track specifications and perform geometric design of the railway track.

CO5: Design turnout and crossings as per the Indian Railways

Pre-requisite knowledge:

COs	C	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of c Programme Outcomes (POs)											Pı	n): rogrami fic Out	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	2	2	2	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	3	2	2	2	3	1	2	2	2	1	1	2	. 3	2	2
CO5	2	3	2	2	3	2	1	1	3	2	2	3	3	2	3
Avg.	2.4	2.4	2.2	2.2	3.0	1.6	1.4	1.6	2.8	1.6	1.6	2.6	3.0	2.2	2.6

Theory:

Unit	Main Topics	Course Description	Lecture(s)
Unit-1	Railway Engineering	Permanent way specifications: Gauges in railway tracks, typical railway track cross-section, coning of wheels	4
	Rails	Function of rails, requirement of rails, types of rail sections – comparison of rail types, length of rail, rail wear, rail failures, creep of rails, rail fixtures and fastenings – Fish plates, spikes, bolts, chairs, keys, bearing plates	4
	Sleepers	Functions and requirements of sleepers, classification of sleepers, timber, metal and concrete sleeper, comparison of different types of sleepers, spacing of sleepers and sleeper density	4
	Ballast	Function and requirements of ballast, types, comparison of ballast materials.	4
	Geometric design	Alignment design, horizontal curves, super elevation, equilibrium, cant and cant deficiency, length & setting out of	6

power My 28 In

\$ 102 Re 102

Study

Pajinda and

		transition curve, gradients and grade compensation, negative super elevation design.					
	Points and crossings	Introduction, necessity of points and crossings, design of a turnout as per Indian railways specifications.	4				
	Signalling and interlocking	Objects of signaling, engineering principle of signaling, classification of signaling, control of train movements, interlocking definition, necessity and function of interlocking, methods of interlocking, mechanical devices for inter locking, Traction and tractive resistances, stresses in track, Hauling capacity of locomotive, modernization of railway track.	6				
Unit-2	Airport Planning	Airport site selection, various surveys for site selection. Classifications of obstructions, Imaginary surfaces, Approach zone and turning zone, Runway orientation using wind rose diagrams, basic runway length, corrections for elevation, temperature & gradient, airport classification.					
	Runway & Taxiway Design		8				
	Airport Layouts	Terminal area, parking area, apron & hanger typical airport layouts, Lightings and markings design for airside area of an airport.	4				

Recommended Books:

- 1. Arora and Saxena, Railway Engineering, Dhanpat Rai & Sons, New Delhi (2006).
- Khanna, Arora & Jain, Airport Planning and Design, Nem Chand & Brothers, Roorkee (1999).
- 3. ICAO and FAA, various advisory circulars guidelines (2018).
- 4. Rangawala, Railway Engineering, Charotar Publishing House, Anan (1989).
- 5. Aggarwal M.M., and Satish Chandra Railway Engineering, Oxford University Press (2013).
- 6. Horenjeff Robert, Airport Engineering, McGraw Hill International Publisher (2010).

Robert John John Jan

\$ 103 Re 103 Musty Rojinda an Int

: Ground Improvement Technique

Subject Code

: PECV - 621 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn about geo-synthetics and their properties

CO2:Design the foundations on stabilized soils

CO3: Compare the results with non-stabilized soils

CO4: Study the Soil improvement using reinforcing elements

CO5:Learn about Geotextiles

Pre-requisite knowledge:

C		Programme Outcomes (POs)											CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co Programme Outcomes (POs)								Pr	ogramr fic Out	
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3								
CO1	3	2	2	2	3	1	1.5	2	3	1	1	3	3	2	2								
CO2	3	3	2	2	3	2	2	1	2	2	2	2	3	2	3								
CO3	3	3	3	3	2	2	2	2	3	2	2	3	3	3	3								
CO4	2	3	2	2	3	1	1	2	2	2	2	2	3	2	2								
CO5	3	3	2	2	3	2	1	1	3	2	2	3	3	2	3								
Avg.	2.8	2.8	2.2	2.2	2.8	1.6	1.4	1.6	2.6	1.8	1.8	2.6	3.0	2.2	2.6								

Theory:

Unit	Main Topics	Course Outline	Lecture(s)						
Unit-1	Introduction	Role of ground improvement in foundation engineering— Geotechnical problems in alluvial, lateritic and black cotton soils, Methods of ground improvement Selection of suitable ground improvement techniques based on soil conditions.							
	In situ densification of cohesion	Less soils and consolidation of cohesive soils: Dynamic compaction Vibro flotation, Sand compaction piles and deep compaction. Consolidation: Preloading with sand drains, and fabric drains, Stone columns and Lime piles- installation techniques – simple design – relative merits of above methods and their limitations	- 10						

Reduct

28 W

A 104

Stubes

Rayinda an I

Unit-2	Soil improvement with the addition of materials	settlement of lime treated soils - improvement in slope stability	12
	Soil improvement using reinforcing elements	Introduction to reinforced earth - load transfer mechanism and strength development - soil types and reinforced earth - anchored earth nailing reticulated micro piles - soil dowels - soil anchors -reinforced earth retaining walls.	10
	Geotextiles	Behaviour of soils on reinforcing with geo textiles - effect on strength, bearing capacity, compaction and permeability - design aspects - slopes - clay embankments - retaining walls - pavements	8

Recommended Books:

- Moseley, Text Book on Ground Improvement, Blackie Academic Professional, Chapman & Hall
- 2. Boweven R., Text Book on Grouting in Engineering Practice, Applied Science Publishers Ltd
- Jewell R.A., Text Book on Soil Reinforcement with Geotextiles, CIRIA Special Publication, Thomas Telford
- Van Impe W.E., Text Book On Soil Improvement Technique & Their Evolution, Balkema Publishers
- Donald, H. Gray& Robbin B. Sotir, Text Book On Bio Technical & Soil Engineering Slope Stabilization, John Wiley
- 6. Rao G.V. & Rao G.V.S., Text Book On Engineering with Geotextiles, Tata McGraw Hill
- 7. Korener, Construction & Geotechnical Methods in Foundation Engineering, McGraw Hill
- 8. Shukla, S.K. and Yin, J.H. Fundamental of Geosynthetic Engineering, Taylor & Francis
- 9. Swamisaran, Reinforced Soil and its Engineering Application, New Age Publication

A)

A 105

Bluby Rajindar and I

Rahme Holy of

: Water and Waste Water Engineering Lab

Subject Code

: PCCV-623

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Perform water quality assessments

CO2: Analyze chemical composition of water samples

CO3: Calculate optimal treatment doses required for effective water treatment

CO4: Evaluate bacterial quality of water

CO5: Apply microscopic techniques for water analysis

Pre-requisite knowledge:

		CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of Programme Outcomes (POs)												ogramr fic Outo	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	2	2	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	2	2	2	2	3	1	1	2	2	1	1	2	3	2	2
CO5	2	3	3	2	2	3	1	1	3	2	1	3	3	2	2
Avg.	2.6	2.6	2.4	2.2	2.8	1.8	1.2	1.6	2.8	1.6	1.4	2.6	3	2.2	2.4

List of Experiments:

Physical, chemical and bacteriological characterization of water and chemical dose determination for water treatment by performing following laboratory experiments:

- 1. To determine the pH value of a given sample of water
- 2. To determine the turbidity of a given water sample
- 3. To determine free residual chlorine in a given sample of water
- 4. To determine the conductivity of a given water sample
- 5. To determine the chloride concentration in a given sample of water
- 6. To determine the optimum coagulant dose
- To determine the temporary and permanent hardness in a given water sample.
- 8. To determine the chlorine dose required for a given water sample
- 9. To determine the dissolved oxygen (DO) in a given sample of water.
- 10. To determine the MPN coliform per 100 ml of a given sample of water

Early Day JEAn

A 106

Shubil Pajinder and

: Technical Communication

Subject Code

: HSMC-601

L	T	P	Credits	Weekly Load
2	0	0	2	2

Course Outcomes:

After successful completion of course, the students should be able to:

CO1:Understand importance of Technical communication

CO2: Be able to draft different kinds of technical documents

CO3:Draft Business letters, Notices, Agenda, Minutes of Meetings and Memos

CO4: Draft Applications for Jobs

CO5:Prepare effectively for job interviews

Pre-requisite knowledge:

COs		0/101	viappii				Outcon			idicates	Strong	11 01 00	Programme Specific Outcome		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	1	2	2	2	1	3	2	2	2	3	2
CO2	2	3	3	3	2	1	2	1	1	1	3	1	2	2	2
CO3	3	3	2	3	2	2	1	1	2	3	2	2	3	3	3
CO4	3	3.	2	3	1	2	1	2	1	3	1	2	2	2	2
CO5	3	3	2	2	1	1	1_	2	2	2	2	2	3	3	3
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	2.4	2.6	2.4

Theory

Unit	Main Topics	Course Description	Lecture(s)
Unit-1	Technical Documents: Design and Development	 Importance of Technical communication Different Kinds of Technical Documents: Style and Appearance Structure of Reports, Technical Proposals, Research Papers 	08
	Technical Writing: Grammar and Editing	 Basics of Grammar Summarizing and Précis writing Proof reading and Editing 	08
Unit-2	Business Communication	 Business Letters-Placing, Cancelling orders, Complaints, Reply to Complaints Notices, Agenda, Minutes of Meetings Writing Memorandum 	08

Reduce they go for

\$ 107 Rel Muly Rajinda a hall

Career Oriented Communication	 Resume and Bio-data- Design and style; Applying for a job; Language and format of a job application Job Interviews- Purpose and process; how to prepare for an interview; language and style to be used in an interview; types of interview questions and how to answer the. 	08
-------------------------------------	---	----

Recommended Books:

- Beer, David F. and David McMurrey, Guide to writing as an Engineer, Wiley. New York, 2004
- 2. Mishra, Sunita & C. Muralikrishna. Communication Skills for Engineers. Pearson.
- 3. Bhattacharya, Indrajit. An Approach to Communication Skills. Dhanpat Rai & Co.
- Sharma, R.C. & Krishna Mohan. Business Correspondence and Report Writing. Tata McGraw-Hill.

some for 28 /2

\$ 108

Shules

Rajinda an full

: Technical Communication Lab

Subject Code

: HSMC-602

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Understand Concepts of Communication

CO2: Improve Communication Skills

CO3: Make oral presentations and be able to use multimedia

CO4: Participate effectively in group discussions, debates and job interviews

CO5: Adopt social and professional communication etiquettes

Pre-requisite knowledge:

Cos		O/PO	марри				Outcon			idicates	sucing	11 01 00	orrelation): Programme Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	1	.2	2	2	1	3	2	2	2	3	2
CO2	2	3	3	3	2	1	2	1	1	1	3	1	3	3	3
CO3	3	3	2	3	2	2	1	1	2	3	2	2	3	3	3
CO4	3	3	2	3	1	2	1	2	1	3	1	2	2	2	2
CO5	3	3	2	2	1	1	1	2	2	2	2	2	2	3	3
Avg.	2.8	3	2.2	2.6	1.4	1.6	1.4	1.6	1.4	2.4	2	1.8	2.4	2.8	2.6

List of Activities of Lab:

- 1. Reflecting upon Self and Analyzing Environment.
- 2. Reading and Improving upon Vocabulary with the Help of Newspapers
- 3. Collecting and Using Library Resources.
- 4. Giving Individual Oral Presentations (Will Require Multiple Sessions)
- 5. English Conversation Skills and Speaking Practice
- 6. Group Discussions/Debates/Extempores
- 7. Summarizing a Given Short Story
- 8. Summarizing Newspaper Reports and Events
- 9. Role Plays/Mock Events
- 10. Grammar Exercises
- 11. Finalization of Team Project Work.
- 12. Collecting Materials for Project Work & Finalization of Project.
- 13. Presentation of Project

By JE M

A 109

Shuby Pajinda an July &

: Irrigation Engineering

Subject Code

: PCCV - 711

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Explain the types and methods of irrigation, including the concept and advantages of smart irrigation systems.

CO2: Analyze the water requirements of crops by understanding soil-moisture relationships, irrigation efficiencies, and concepts like duty and delta.

CO3: Design canal irrigation systems including canal alignment, discharge estimation, and application of Lacey's and Kennedy's theories, along with drainage solutions for water logging.

CO4: Describe the components and layout of canal headworks, and design weirs, barrages, and canal head regulators using IS codes and seepage theories.

CO5: Identify and design various canal regulation and cross drainage works, including canal falls, energy dissipation measures, and CD structures suited to field conditions.

Pre-requisite knowledge:

		O/PO I		Programme Specific Outcomes											
Cos	PO 1	PO · 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	2	2	2	2	2	1	1	3	2	2	2	3	2	2
CO3	3	2	3	3	3	2	2	2	2	2	2	3	3	3	3
CO4	3	2	2	2	3	1	1	2	2	1	1	2	3	2	2
CO5	3	2	2	2	3	2	2	1	2	2	2	2	3	2	2
Avg.	3	2	2.2	2.2	2.8	1.6	1.4	1.6	2.4	1.6	1.6	2.4	3	2.2	2.2

-		

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Introduction	Introduction, types and methods of irrigation, concept of smart irrigation systems	6
	Water Requirement of Crops	Soil-moisture-irrigation relationship, depth and frequency of irrigation, irrigation efficiencies, consumptive use and its determination, duty and delta relationship, factors affecting duty, crop seasons.	8
	Canal Irrigation	Canal irrigation system, canal alignment, canal losses, estimation of design discharge of a canal, design of stable channels by Lacey's and Kennedy's theory, Water logging, design of tile drains.	10
Unit-2	Canal Head works	Layout and component parts of a diversion headwork scheme, design of weir/barrage as per IS specifications	8

court Ply 28

A 110

Shakes 2

Rajinda Ou

W &

Design of Impermeable floor	Causes of failure of hydraulic structures founded on previous foundations, Bligh's creep theory and Khosla seepage theory, hydraulic jump and its applications in the design of hydraulic structures, design of a canal head regulator.	6
Canal Regulation Works	Canal falls, necessity, location, and types of falls, design of a vertical drop fall and a glacis fall, roughening measures for energy dissipation, cross regulators and distributary's head regulators, canal escape and canal outlets	6
Cross Drainage (CD) Works	Need, types, selection of suitable CD work, design of CD works	4

Recommended Books:

- S.K. Garg, Irrigation Engineering and Hydraulic Structures, Khanna Publishers, New Delhi (2015).
- P.N.Modi, Irrigation Water Resources and Water Power Engineering, Standard Book House, New Delhi(2014)
- 3. Bharat Singh, Fundamentals of Irrigation Engineering, Nem Chand, Roorkee (2005)

early J8 for

A Telli

Aluby Rojinder and

: Construction Management

Subject Code

: PCCV - 712

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Apply the principles of quantity surveying to prepare quantity take-offs, bar bending schedules, and detailed cost estimates using MS Excel and standard formats.

CO2: Interpret and prepare specifications, units of measurements, and standard schedule of rates for various items of civil engineering works.

CO3: Analyze and evaluate rates for different items of work by understanding labor, material, and equipment components in rate analysis.

CO4: Explain the types of contracts, tendering procedures (including e-tendering), and financial models such as BOT, DBFOT, PPP, and HAM used in construction projects.

CO5: Develop project schedules using bar charts, Gantt charts, CPM and PERT techniques; perform time-cost optimization and resource allocation using network techniques and software tools

Pre-requisite knowledge:

	C	O/PO	Mappii	ng: (St	rong(3)	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
COs				Programme Specific Outcomes											
003	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	3	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO ₄	3	3	3	2	3	1	1	2	2	1	1	2	3	2	2
CO5	3	3	3	3	2	2	1	1	2	2	2	3	3	3	2
Avg.	3	3	3	2.4	2.8	1.6	1.2	1.6	2.6	1.6	1.6	2.6	3	2.4	2.4

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Quantity Surveying and Cost Estimation	Quantity survey measurements, Bill of quantities, analysis of rates for different items of work, Specifications and Units of different items of work, Detailed Estimate of various items of Building and Pavements using MS Excel, Common schedule of rates for different items of works, Bar Bending Schedule	12
	Contracts	Types of contracts and their characteristics, procedure for tendering/e-tendering and contracts, BOT, DBFOT, PPP & HAM financial models, evaluation and examination of tenders, award of work, Joint Ventures, Concession	12

		Agreements,	
Unit-2	Network Techniques	Methods of Scheduling-Gantt Chart, Bar chart, Development of Bar charts and Gantt chart, Merits & limitations of Bar chart & Gantt chart. Concept of CPM & PERT: Introduction to Critical path method (CPM), Program evaluation & review techniques (PERT), Network Diagramming of Projects Activity-on arrow (AOA) Diagrams-Concept of Activity and Event, Time-Analysis of Networks-Forward Pass, Backward Pass, Probabilistic Durations- Optimistic Time, Pessimistic Time, Most Likely Time, Project Scheduling-ES and LS Schedules as Limits, Resource Scheduling, Time/Cost Trade-off Definitions, functions & characteristics of project planning and principles of project Planning and Management, Bar milestone charts, Planning and scheduling with PERT / CPM, Time cost optimization, Probability concepts Allocation of resources and resource levelling, Updating, Application of software for Project planning, scheduling	24

Recommended Books:

- Seetharaman S., Construction Engineering and Management, Umesh Publication Delhi (2017)
- Punima B. C. and Khandelwal; Project Planning CPM, Laxmi Publication New Delhi (2016)
- K.K. Chitkara, Construction project management: planning, scheduling and controlling, Tata McGraw-Hill. (2014)
- L.S. Srinath, PERT and CPM Principles and Application, Third edition, Affiliated eastwest press Pvt Ltd (2001)

eury J8

A 113

Study Rojinda an My

: Construction Management

Subject Code

: OECV - 711 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Prepare detailed estimates, bill of quantities, rate analysis, specifications, and bar bending schedules for building and pavement works using manual methods and MS Excel.

CO2: Interpret and apply the common schedule of rates and units for various civil engineering works in accordance with standard practices.

CO3: Understand the types of contracts, tendering and e-tendering procedures, financial models (BOT, DBFOT, PPP, HAM), and the process of evaluation and award of contracts.

CO4: Develop and interpret project schedules using bar charts, Gantt charts, milestone charts, and apply principles of project planning and resource allocation.

CO5: Apply network techniques like CPM and PERT for project scheduling, including time-cost trade-off analysis, probabilistic time estimates, and resource levelling, using both manual and software-based approaches.

Pre-requisite knowledge:

		0/10/		rrelation): Programme Specific Outcomes											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	3	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	- 3
CO4	3	3	3	2	3	1	1	2	2	1	1	2	3	2	2
CO5	3	3	3	3	2	2	1	ī	2	2	2	3	3	3	2
Avg.	3	3	3	2.4	2.8	1.6	1.2	1.6	2.6	1.6	1.6	2.6	3	2.4	2.4

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Quantity Surveying and Cost Estimation	Quantity survey measurements, Bill of quantities, analysis of rates for different items of work, Specifications and Units of different items of work, Detailed Estimate of various items of Building and Pavements using MS Excel, Common schedule of rates for different items of works, Bar Bending Schedule	12
	Contracts	Types of contracts and their characteristics, procedure for tendering/e-tendering and contracts, BOT, DBFOT, PPP & HAM financial models, evaluation and examination of tenders, award of work, Joint Ventures, Concession Agreements,	12

end by JE for

A 114

Studes

Rajinda and

Unit-2	Network Techniques	Methods of Scheduling-Gantt Chart, Bar chart, Development of Bar charts and Gantt chart, Merits & limitations of Bar chart & Gantt chart. Concept of CPM & PERT: Introduction to Critical path method (CPM), Program evaluation & review techniques (PERT), Network Diagramming of Projects Activity-on arrow (AOA) Diagrams- Concept of Activity and Event, Time-Analysis of Networks- Forward Pass, Backward Pass, Probabilistic Durations- Optimistic Time, Pessimistic Time, Most Likely Time, Project Scheduling- ES and LS Schedules as Limits, Resource Scheduling, Time/Cost Trade-off Definitions, functions & characteristics of project planning and principles of project Planning and Management, Bar milestone charts, Planning and scheduling with PERT / CPM, Time cost optimization, Probability concepts Allocation of resources and resource levelling, Updating, Application of software for Project planning, scheduling	24
--------	-----------------------	---	----

Recommended Books:

- Seetharaman S., Construction Engineering and Management, Umesh Publication Delhi (2017)
- Punima B. C. and Khandelwal; Project Planning and Control with PERT and CPM, Laxmi Publication New Delhi (2016)
- K.K. Chitkara, Construction project management: planning, scheduling and controlling, Tata McGraw-Hill. (2014)
- 4. L.S. Srinath, PERT and CPM Principles and Application, Third edition, Affiliated east-west press Pvt Ltd (2001)

Raine Poly JE for

De 115

Ships

Payinda and

: Environment Law and Policy

Subject Code

: OECV-711 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Demonstrate substantive knowledge of the major environmental laws and policies currently in place at the national and international levels.

CO2: Describe the process of environmental policy development for decision makers.

CO3: Apply environmental ethics theory to real-world environmental conflicts and issues.

CO4: Develop competence in problem-based practice in the application of the law

CO5: Develop critical thinking about the integration of science, ethics and law for achieving sustainable development goals.

Pre-requisite knowledge:

	C	O/PO	Mappi	ng: (St	rong(3) / Med	lium(2) / Wea	ak(1) ii	ndicates	strengt	h of co	rrelatio	n):	
Cos					Progra								Programme Specific Outcomes		
1000000A	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO		PSO 3
CO1	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	2	2	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	2	3	2	2	3	1	1	2	2	1	2	2	3	2	2
CO5	3	3	2	2	3	2	1	1	3	2	2	3	3	2	3
Avg.	2.8	2.8	2.2	2.2	3.0	1.6	1.2	1.6	2.8	1.6	1.8	2.6	3.0	2.2	2.6

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Basic Concepts in Environmental Law	An introduction to the legal system; Constitution, Acts, Rules, Regulations; Indian Judiciary, Doctrine of precedents, judicial review, Writ petitions, PIL—liberalization of the rule of locus standi, Judicial activism. Introduction to environmental laws in India; Constitutional provisions, Bhopal gas tragedy; Rio conference. General principles in Environmental law: Precautionary principle; Polluter pays principle; Sustainable development; Public trust doctrine. Overview of legislations and basic concepts.	10
	Forest, Wildlife and Biodiversity related laws	Evolution and Jurisprudence of Forest and Wildlife laws; Colonial forest policies; Forest policies after independence 2 Statutory frame work on Forests, Wildlife and Biodiversity: IFA, 1927; WLPA, 1972; FCA, 1980; Biological Diversity Act, 2002; Forest Rights Act, 2006.	10

some Doly Sto for

A 20116

Shutes

Rojinda a fl

		Strategies for conservation Project Tiger, Elephant, Rhino, Module leopard.				
Unit-2	Air, Water and Marine Laws	National Water Policy and some state policies Laws relating to prevention of pollution, access and management of water and institutional mechanism: Water Act, 1974; Water Cess Act, 1977, EPA, 1986. Pollution Control Boards Ground water and law Judicial remedies and procedures Marine laws of India; Coastal zone regulations. Legal framework on Air pollution: Air Act, 1981; EPA, 1986	10			
	Environment protection laws and large Projects	Legal framework on environment Protection-Environment Protection Act as the framework legislation-strength and weaknesses; EIA; National Green Tribunal The courts infrastructure projects				
ķ	Hazardous Substances and Activities	Legal framework: EPA and rules made thereunder; PLI Act, 199 Principles of strict and absolute liability	8			

Recommended Books

- 1. Birnie P. (2009) et al., International Law and the Environment, 3rd ed., Oxford.
- 2. Desai A. (2002) Environmental Jurisprudence, 2nd ed., Modern Law House, Allahabad

Rahm Poly SE IN

A 20117

· Shull

Rojinda and

Title of the course Subject Code : Advanced Construction Materials and Techniques

: PECV-711 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Characterize and specify advanced construction materials for thermal and sound insulation, smart materials and plastic and timber products.

CO2: Identify Special Concretes used in construction industry for specific applications.

CO3: Identify and Specify construction techniques for earthwork, tunneling and formwork.

CO4: Identify the various construction techniques for High Rise Buildings.

CO5: Know how to Design Low Cost Housing and cost analysis of In- Situ Pre-Cast, Pre-Fabricated and Modular construction.

Pre-requisite knowledge:

		011 0 1		Programme Specific Outcomes											
Cos	PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	2	2	2	2	3	2	1	i	3	2	2	2	3	2	3
CO3	3	2	3	3	2	2	2	2	2	2	2	3	2	3	3
CO4	2	2	2	2	3	1	1	2	2	1	1	2	3	2	2
CO5	2	3	2	3	3	2	1	1	3	2	2	3	3	2	3
Avg.	7.63	2.2	2.2	2.4	2.8	1.6	1.2	1.6	2.6	1.6	1.6	2.6	2.8	2.2	2.6

-	2					
-	М	1	a	n	**	
- 4		ш	c	v	r	i

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Advanced Construction Materials	Plastics, Timber products and Preservation, materials for thermal insulation, materials for sound insulation. Smart Materials and their applications.	6
	Special Concretes	Light Weight Concrete, Vacuum Concrete, Waste Material Based Concrete, Fiber reinforced concrete, Polymer Concrete Composites, Ferro cement, concreting at High and Low Temperatures, Self- Compacting Concrete (SCC), Ready Mixed Concrete (RMC) and its characteristics and advantages, Shotcrete and concreting in tunnels.	10
	Techniques for Tunnelling and Formwork	trenchless technology, Slip Form Shuttering, Latest type of Formwork, e.g. DOKA.	8
Unit-2	High Rise Structures	Construction techniques for high rise buildings, chimneys, dams. Special problems of high-rise construction & optimization of space,	6

parms for J8 for

De 118

Shuly

Rojinda de S

Fire Resistance in Structures	Fire hazards in buildings and preventive measures	(
Low Cost Housing	Types, Design and advantages.	(
Special Constructions	Pre-Cast and Pre-Fabricated Construction and Modular Construction, production and utilization in various types of structures, Environmental and Economic Benefits.	(

Recommended Books:

- M.L. Gambhir, Neha Jamwal, Building Materials, Products, properties and systems, McGraw Hill (2011)
- 2. M.L. Gambhir, Concrete Technology, McGraw Hill(2013)
- 3. Subir Sarkar, Subhajit Sarawati, Construction Technology, Oxford University Press (2008).

part for AB M & 1119 Royindar and I Y

: Advanced Concrete Design

Subject Code

: PECV-711 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Design combined footings (rectangular, trapezoidal, strap, and raft) and understand pile foundation basics.

CO2: Analyze and design cantilever retaining walls with stability checks; understand the concept of counterfort retaining walls.

CO3: Design circular and rectangular water tanks resting on ground, and understand design concepts of overhead and Intze tanks.

CO4: Analyze and design circular beams curved in plan with symmetrical column supports.

CO5: Understand IS code provisions and design flat slabs with proper reinforcement detailing.

Pre-requisite knowledge:

		0/1 0 1	марри		Progra					1				ogrami fic Out	
COs	PO						PO	PSO	PSO PS	PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	2	3	2	2	2	2	I	2	2	2	2	2	2	3
CO3	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
CO4	2	2	2	2	3	1	1	2	2	1	1	2	2	2	2
CO5	3	2	3	2	3	2	2	2	2	1	2	2	2	2	2
Avg.	2.6	2.4	2.6	2.2	2.8	1.6	1.6	1.8	2.4	1.4	1.6	2.4	2.4	2.2	2.4

Theory

Unit	Main Topics	Course Description	Lecture(s)
Unit-1	Combined Footings	Different types, design of rectangular, trapezoidal, strap and raft footings, Pile Foundations	10
	Retaining Walls	Types, behavior, stability requirements, design of cantilever type retaining walls. Introduction to counterfort type retaining wall	8
	Water Tanks	Introduction, general design requirements on no crack basis, Design of circular and rectangular tanks resting on ground, Design philosophy for design of overhead tanks, introduction to Intze type tanks and their staging and foundation	12
Unit-2	Beams curved in plan	Reinforced Concrete Design Circular beam loaded uniformly and supported on symmetrically placed columns	10

Rahut Pap J8 92

A 120

Study

Rajinda and

Flat Slabs	Introduction and Terminology, IS Code Provisions, Analysis	8
	and Design of Flat Slab, Reinforcement Detailing	

Recommended Books:

- 1. Jain, A.K., Reinforced Concrete-Limit State Design, Nem Chand & Bros (2012)
- 2. Varghese, P. C., Limit State Design of Reinforced Concrete, PHI Publishers (2016).

palul Py 28

A 121

Shules

Rojinda an Mil

: Seismic Resistant Design of Structures

Subject Code

: PECV - 712 A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to:

CO1: Analyze free vibrations in single degree of freedom systems

CO2: Evaluate damped vibrations in mechanical systems

CO3: Understand earthquake resistant design principles

CO4: Perform lateral load analysis using seismic codes

CO5: Design and detail concrete structures for seismic resistance

Pro requisite knowledge

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of co										Programme Specific Outcomes				
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	2	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	3	3	3	3	2	1	1	3	2	2	2	3	2	3
CO3	3	3	2	3	3	2	2	2	3	2	2	3	3	3	3
CO4	3	3	3	3	3	1	1	2	2	1	1	2	3	2	2
CO5	3	3	3	3	2	2	1	1	2	2	2	2	3	1	2
Avg.	2.8	2.8	2.6	2.8	2.8	1.6	1.2	1.6	2.6	1.6	1.6	2.4	3	2	2.4

Theor	Main Topics	Course outlines	Lecture(s)
Unit-1 Earthquake Genesis		Causes of earthquake and propagation, Earthquake occurrence and return period, Characterization of strong ground motions, Seismic hazard assessment, Review of damage in past earthquakes	12
	Introductory Structural Dynamics	Basic concepts of structural vibrations in Single-Degree and Multi-Degree of Freedom systems	12
Unit-2 Seismic Analysis of Buildings		Introduction to Indian Standard IS 1893 (Part-1)-2016, Seismic design philosophy, Design response spectrum, Seismic analysis of buildings—Static and Dynamic analysis procedures using codal provisions. Seismic load combinations; Introduction to analysis of masonry-infilled RC buildings.	12
	Seismic Design of	Concept of ductility for seismic resistance; Capacity based design; Introduction to Indian Standard, IS 13920-2016.	12

	Building Components	1,000	provisions	in	structural	elements	using	codal		
--	------------------------	-------	------------	----	------------	----------	-------	-------	--	--

Recommended Books:

- 1. Pankaj Agarwal, and Manish Shrikhande, Earthquake Resistant Design of Structures, PHI (2022)
- 2. Mario Paz and William Leigh, Structural Dynamics (Theory and Computation), Kluwer Academic Publishers, London (2004)
- 3. Srinivas Vasam and K. Jagannadha Rao, Structural Dynamics and Earthquake Engineering, Publisher: S.K. Kataria & Sons, (2018) ISBN 10: 9350146541 / ISBN 13: 9789350146545

Rahue Way

A Re

Shuk! Paj

Rajinda and

: Advanced Steel Structures Design

Subject Code

: PECV - 712 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Design slab base and gusseted base plates for steel columns under axial load and moment.

CO2: Analyze and design welded and riveted plate girders, including flange, web, stiffeners, and splices.

CO3: Design steel roof trusses and industrial building frames, understanding the supporting systems.

CO4: Understand the concept, components, and advantages of Pre-Engineered Buildings (PEB) over conventional steel structures.

CO5: Apply IRC and railway bridge codes in the design of steel railway bridges, including stringers, cross girders, and through trusses.

Pre-requisite knowledge:

O Servi		0/101	02 00	Programme Specific Outcomes											
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO PSO 1 2	PSO 3
CO1	3	2	3	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	2	2	2	3	2	1	1	3	2	2	2	2	2	3
CO3	3	3	2	3	3	2	2	1	3	2	2	2	3	3	3
CO4	2	3	3	2	3	1	1	2	2	1	1	2	3	2	2
CO5	2	2	3	2	2	1	2	2	2	1	1	- 2	2	2	2
Avg.	2.6	2.4	2.6	2.2	2.8	1.4	1.4	1.6	2.6	1.4	1.4	2.2	2.6	2.2	2.4

-	_					
1	ì	h	P	n	r	٦

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Column Bases	Introduction, slab base, gusseted base, design of column base subjected to axial load and moment	10
	Plate Girders	Introduction, weight and economic depth, design of flanges, design of web, curtailment of flange plates, intermediate and bearing stiffeners, design of a riveted and welded plate girders, web and flange splice.	10
	Industrial Buildings (Steel Structures)	Design of roof trusses and supporting system, Industrial building frames	10
Unit-2	Introduction to Pre-Engineered Buildings (PEB)	Comparison with Conventional Steel Buildings, Components of PEB	8

Rahmed Algo Sto Ar All

A 124

Study

Rajinda and

Steel Bridges

Recommended Books

- 1. Dunham, C.W., Planning of Industrial Structures, John Wiley and Sons (2001).
- 2. Gary, W., Steel Designer's Manual, Prentice Hall (2008).
- S. M. A. Kazimi and R. S. Jindal, "Design of Steel Structures", Prentice Hall of IndiaPvt Ltd (1988).
- 4. M. Edwin, J. Gaylord and J. E. Stallmeyer, "Design of Steel Structures", Mc Graw Hill (2006).

Zelul Por St ful

A 125

Shuby

Rejinder and Mil

: Computer-Aided Civil Engineering Design Lab

Subject Code

: PCCV-713

L	T	P	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the power and precision of computer-aided modeling and drafting

CO2: Have ability to construct accurate 2D geometry as well as complex 3D shapes and surface objects;

CO3: Have ability to create 2D representations of 3D objects as plan view, elevations and sections;

CO4: Have ability to assemble these drawings in industry-standard plan form and produce plotted hardcopies ready for distribution;

CO5: Have awareness of architectural drafting with a focus on industry standards

Pre-requisite knowledge:

	C	O/PO I		Programme Specific Outcomes											
COs	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO PSC 1 2		PSO 3
CO1	3	3	2	2	3	1	1	2	3	1	1	3	3	2	2
CO2	3	2	3	2	3	2	2	1	3	2	2	2	3	2	3
	2	2	3	3	3	2	2	2	3	2	2	3	3	3	3
CO3	3	3			3	2	2	2	2	1	1	2	3	2	2
CO4	2	2	2	2	_	7000	1	1	3	2	2	3	3 ^	2	3
CO5	2	2	2	2	3	2	1	1			1.6	2.6	3	2.2	2.6
Avg.	2.6	2.4	2.4	2.2	3	1.8	1.6	1.6	2.8	1.6	1.6	2.0)	2.2	2.0

List of Experiments:

1. Intro to CAD, Intro to AutoCAD, Precision Drawing & Drawing Aids, Geometric Shapes, Basic Printing, Editing Tools, Architectural Views & Drafting Views with AutoCAD (Surfaces, Solids), Annotating in AutoCAD with Text & Hatching Layers, and Templates.

2. Advanced plotting (Layouts, Viewports), Office Standards, Dimensioning, Internet and collaboration, Blocks, Drafting symbols, Attributes. Drawing of various components of RCC and

Steel constructions.

: Foundation Engineering

Subject Code

: PECV-721 A

1	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1:Understand the importance of soil investigation for any civil engineering construction

CO2: Analyze bearing capacity and shear failure in shallow foundations

CO3: Evaluate settlement and design criteria for shallow foundations

CO4: Design and assess pile foundations

CO5: Understand specialized foundations such as drilled piers, caissons and well foundations

Pre-requisite knowledge:

	C	O/PO 1	Mappir	ng: (Str	rong(3)	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co	rrelatio	n):	
Cos				Programme Specific Outcomes											
CUS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COI	3	2	2	2	2	2	2	2	3	2	1	3	2	2	2
CO2	3	3	3	3	2	2	I	2	. 3	2	- 2	3	3	1	3
CO3	3	3	3	3	- 3	2	1	2	3	2	2	3	3	1	3
CO4	3	3	3	3	3	2	1	2	3	2	2	3	3	1	3
CO5	3	2	-1	2	1	2	2	1	2	2	2	3	2	1	2
Avg.	3	2.6	2.4	2.6	2.2	2	1.4	1.8	2.8	2	1.8	3	2.6	1.2	2.6

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Soil Exploration	Introduction to soil exploration, scope, soil exploration for different structures, spacing, significant depth, boring and sampling techniques, bore hole plan, types of samples, penetration test (SCP and SPT), sample disturbances and Geophysical methods	8
	Earth Pressure	At rest condition, states of plastic equilibrium, Rankine and Coulomb's theories for active and passive conditions, Lateral Earth pressure in layered soils. Stability of cantilever Retaining wall. Introduction to Reinforced Earth Wall	6
	Stability of Slopes:	Infinite slope, types of failure, total and effective stress analysis, Taylor's stability numbers, concept of factors of safety, method of slices, modified method of slices, Swedish's circle method, friction circle method	8
Unit-2	Bearing Capacity	Definitions, introduction to shallow and deep foundation, depth of foundation, Concept of net and gross bearing capacity. Terzaghi's general bearing capacity equation, IS code equation,	6

early St Iw

A 127

Shull go

Rajinda De Jul

	factors affecting bearing capacity. Settlements for clays and sands, permissible settlements, bearing capacity by penetration tests, Influence of eccentric and inclined loads, plate load test	
Pile Foundations	Types, function, selection of piles, pile driving formulae, equipment, point, and bearing and friction piles. Load carrying capacity of single pile, group action, spacing of piles, Negative skin friction, settlement of pile groups, under-reamed piles	8
Caissons and Wells	Introduction, components, shapes, Construction and sinking of well, tilts and shifts	6
Machine Foundation	Definition, types, problem of machine foundation, soil spring constants, General Design Criteria for machine foundation	6
		T-4-1-

Recommended Books:

- 1. Murthy, V.N.S, A text book of Soil Mechanics and Foundation Engineering, UBS Publishers & Distributors Pvt. Ltd., New Delhi 1999.
- 2. Punmia, B.C., Soil Mechanics and Foundation Engineering, Laxmi Publications Pvt. Ltd., New Delhi, 1995.
- 3. Gopal Ranjan, ASR Rao, Basic and Applied Soil Mechanics, New Age International (P) Ltd. Publishers- N. Delhi, Edition No. - 3rd, 2016.
- 4. Nainan P Kurian, Design of foundation Systems Principles and Practices, Narosa, 2011
- Braja M. Das, Principles of Foundation Engineering, Thomson Asia Pvt. Ltd., Singapore, 2005.
- 6. Donald P. Coduto, Man-Chu Ronald Yeung and William A. Kitch, Geotechnical Engineering, Principles and Practices, PHI Learning Private limited, 2011.
- 7. Joseph E. Bowles, Foundation Analysis and Design, McGraw-Hill, 1998.
- 8. P. Purshotam Raj, Geotechnical Engg, Tata Mcgraw Hill, N. Delhi, Edition No. I, 1995

: Disaster Preparedness & Planning

Subject Code

: PECV- 721 B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Identify various types of disasters, their causes, effects & mitigation measures.

CO2: Demonstrate the understanding of various phases of disaster management cycle and create vulnerability and risk maps.

CO3: Understand the use of emergency management system to tackle the problems.

CO4: Discuss the role of media, various agencies and organisations for effective disaster management.

CO5: Design early warning system and understand the utilization of advanced technologies in disaster management.

Pre-requisite knowledge:

				Programme Specific Outcomes											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	2	2	2	2	2	3	1	2	2	2	1	3	2	3	3
CO2	2	3	2	1	3	2	1	2	2	2	. 2	2	3	3	3
CO3	2	2	.2	2	3	1	1	2	3	1	1	3	3	2	2
CO4	2	2	2	2	3	2	1	1	3	2	2	3	3	2	3
CO ₅	3	3	3	3	3	2	2	2	3	2	2	3	3	3	3
Avg.	2.2	2.4	2.2	2	2.8	2	1.2	1.8	2.6	1.8	1.6	2.8	2.8	2.6	2.8

Theory

Unit	Main Topic	Course outline	Lecture(s)
Unit-1	Introduction to Disaster Management	Define and describe disaster, hazard, vulnerability, risk- severity, frequency and details, capacity, impact, prevention, mitigation.	6
	Disasters	Identify and describe the types of natural and manmade disasters, hazard and vulnerability profile of India, mountain and coastal areas, Factors affecting vulnerability such as impact of development projects and environment modifications (including dams, land-use changes, urbanization etc.), Disaster impacts (environmental, physical, social, ecological, economic etc.); health, psychosocial issues; demographic aspects (gender, age, special needs), Lessons and experiences from important disasters with specific reference to civil engineering.	12

land for SE for

A 129

Studes

Roy'inder Dr

	Disaster Mitigation and Preparedness	Disaster Management Cycle-its phases, prevention, mitigation, preparedness, relief and recovery, structural and non-structural measures; Preparedness for natural disasters in urban areas.	6
	Risk Assessment	Assessment of capacity, vulnerability and risk, vulnerability and risk mapping, stages in disaster recovery and associated problems; Use of Remote Sensing Systems (RSS) and GIS in disaster Management, early warning systems.	6
Unit-2	Post disaster response	Emergency medical and public health services; Environmental post disaster response (water, sanitation, food safety, waste management, disease control, security, communications); reconstruction and rehabilitation; Roles and responsibilities of government, community, local institutions, role of agencies like NDMA, SDMA and other International agencies, organizational structure, role of insurance sector, DM act and NDMA guidelines.	10
	Integration of public policy	Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management.	8

Recommended Books:

- 1. Natural Hazards in the Urban Habitat by Iyengar, C.B.R.I., Tata McGraw Hill, Publisher
- 2. Natural Disaster management, Jon Ingleton (Ed), Published by Tudor Rose, Leicester 92
- 3. Singh B.K., 2008, Handbook of disaster management: Techniques & Guidelines, Rajat Publications.
- 4. Disaster Management, R.B. Singh (Ed), Rawat Publications
- 5. ESCAP: Asian and the Pacific Report on Natural Hazards and Natural Disaster Reduction

Robert John John John Johnson

A 130

Shuly

Pajinda and

: Advanced Concrete Technology

Subject Code

: PECV-722 A

L	T	P	Credits	Weekly Load			
3	0	0	3	š			

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Have knowledge about advanced concrete technology

CO2:Learn about strength of concrete and their properties

CO3:Do mix design of concrete by different codes

CO4: Know the concept of high strength concrete

CO5:Learn about special concrete types

Pre-requisite knowledge:

	C	O/PO	Марріі	ng: (St	rong(3) / Med	lium(2) / We	ak(1) ii	ndicates	strengt	th of co	rrelatio	n):	
COs	Programme Outcomes (POs)												Programme Specific Outcome		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
COI	2	2	3	2	3	1	1	2	3	11	1	3	3	3	2
CO2	3	2	2	2	3	2	1	1	3	2	2	2	3	3	3
CO3	3	2	2	2	3	1_	1	2	3	1	1	3	3	2	2
CO4	3	3	2	2	3	2	2	1	2	2	2	2	3	2	3
CO5	3	3	3	3	2	2	2	2	3	2	2	3	3	3	3
Avg.	2.8	2.4	2.4	2.2	2.8	1.6	1.4	1.6	2.8	1.6	1.6	2.6	3.0	2.6	2.6

Theory

Unit	Main Topics	Course Outlines	Lecture(s)				
Unit-1	Introduction	Concrete materials - Cement: Physical tests on cement - Concrete materials -Tests on aggregates - Quality of Water for mixing and curing - use of seawater for mixing concrete. Rheology of concrete- Introduction, Rheological behaviour, Factors affecting rheological properties, mixture adjustments.	10				
	Mix Design	Factors influencing mix proportion - Mix design by ACI method and I.S. code method - Design of normal concrete, high strength concrete and self-compacting concrete. Admixtures - accelerating admixtures - Retarding admixtures - water-reducing admixtures - Air entraining admixtures - colouring agent - Plasticizers. Batching - Mixing - Transportation - Placing of concrete - curing of Concrete.					
Unit-2	Strength of Concrete	Shrinkage and temperature effects - creep of concrete - permeability of concrete - durability of concrete - Corrosion - Causes and effects -remedial measures-Thermal properties of concrete - Micro cracking of concrete, microstructure of concrete.					

some long SE for

A 131

Studes

Pajinda

	Classification of causes of concrete deterioration – Permeability of concrete – Chloride penetration – Acid attack - Sulfate attack – Alkali-aggregate reaction – Concrete in sea water– AC impedance test - Corrosion of embedded steel in concrete – Case histories.	
Special Concrete	High Performance Concrete (HPC) Introduction – Principles of HPC –Ingredients used for HPC – Production of HPC – Curing of HPC – Mechanism of HPC –Properties of HPC during the fresh and hardened state. Durability of HPC - Acid Attack –Permeability – Scaling resistance – Chloride penetration – Resistance to sea water – sulfate attack – Alkali-aggregate reaction – Fire resistance – Mix design methods of HPC. Special High Performance Concrete-Air-entrained HPC Reactive powder Concrete-Bio concrete-Geo polymer, Fiber reinforced concrete Quality control - Sampling and testing-Acceptance criteria.	14

Recommended Books:

- 1. Shetty, M.S., Concrete Technology, Theory & Practice, S.Chand and Co, 2004.
- 2. Gambhir, M.L., Concrete Technology, Tata McGraw Hill, 2004.
- 3. Nevile, Properties of Concrete, Longman Publishers, 2004.
- 4. Santa kumar A.R., Concrete Technology, Oxford University Press, New Delhi, 2007.
- 5. P.-C. Aïtcin, High Performance Concrete, E &FN SPON, 1998
- E.G. Nawy, Fundamentals of High Performance Concrete, John Wiley & Sons., 2nd edition, 2000
- 7. High Performance Concrete Structural Designers Guide published by FHWA, USA, 2005.
- Geert De Schutter, Peter J.M. Bartos, Peter Domone, John Gibbs, Self-Compacting Concrete, Whittles Publishing, 2008.

point for 28 fr

A 20132

Study pajindar and

: Pre-Stressed Concrete

Subject Code

: PECV-722 B

LT		P	Credits	Weekly Load		
3	0	0	3	3		

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Explain the basic concepts, terminology, types, and systems of prestressing, and evaluate losses in prestress.

CO2: Apply limit state design principles to prestressed concrete structures considering safety and serviceability.

CO3: Analyze and design prestressed members subjected to axial tension and flexure, using service load and ultimate strength methods.

CO4: Analyze and design prestressed sections for shear and torsion, ensuring proper detailing as per codal provisions.

CO5: Calculate deflections and crack widths, and understand the transmission of prestress in pre-tensioned and post-tensioned members.

Pre-requisite knowledge:

	С	O/PO I	Mappir	ng: (Sti	ong(3)	/ Med	lium(2) / Wea	ak(1) ir	ndicates	strengt	h of co			
00.	Programme Outcomes (POs)												Programme Specific Outcomes		
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	2	3	1	1	2	3	1	1	3	3	3	2
CO2	3	2	2	2	3	2	1	1	3	2	2	2	3	3	3
CO3	3	2	2	2	3	1	1	2	3	1	1	3	3	2	2
CO4	3	3	2	2	3	2	2	1	2	2	2	2	3	2	3
CO5	3	3	3	3	2	2	2	2	3	2	2	3	3	3	3
Avg.	2.8	2.4	2.4	2.2	2.8	1.6	1.4	1.6	2.8	1.6	1.6	2.6	3.0	2.6	2.6

Theory

Unit	Main Topics	Course Outlines	Lecture(s)
Unit-1	Introduction- Theory and Basic Concepts	Prestressing concrete terminology, advantages and applications of prestressed concrete, types of prestressing, materials for prestressed concrete and permissible stresses, prestressing systems and devices, losses in prestress.	8
	Limit State Design	Review of limit state design concepts- safety and serviceability requirements.	5
	Analysis and Design for Axial Tension and Flexure	Analysis of members under axial load and flexure, resultant stresses at a section, analysis at service loads-load balancing concept, cracking moment, analysis for ultimate strength, calculation of moment demand, design of type 1 and type 2 members, detailing requirements, analysis of partially prestressed sections.	9

Rade Joy 28

A 133

Bluby

Rojinda and

for	Analysis and Design for Shear and Torsion	Stress in an uncracked beam, limit state of collapse for shear and torsion, design steps and detailing requirements.					
	Calculations of Deflection and Crack Width	Total deflection due to gravity load and prestressing force, limits of deflection, limits of span-to-effective depth ratio, prediction of long-term deflections, calculation of crack width, limits of crack width.	10				
	Transmission of Prestress in pre- tensioned and post- tensioned members	Introduction, transmission length and end zone reinforcement	8				

Recommended Books:

- 1. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi,
- 2. Pandit G. S. and Gupta S. P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
- 3. Singh S. B., "Analysis and Design of Prestressed Concrete Structures" Willey, 2023.

Guest Faculty

Dr. Deepak Swami

AsP, IIT, Jodhpur

Sh. Rahul

Lab Technician

Dr. Shirpa Singla AP Contractual

Dr. Dericks Praise Shukla

AsP, IIT, Mandi

Dr. Rajinder Ghai S.E, Water Resource Deptt. Dr. Pavitar Singh Guest Faculty

Dr. Sagar Rohidas Chavan

AsP, IIT, Ropar

Dr. Prem Pal Bansal Prof., TIET, Patiala

Dr. Shankar Singh HOD (Civil)